Home > Quantitative Aptitude Questions > Algebra Questions Answers
Algebra Questions Answers
Q1 :
If a = b x , b = c y and c = a z , a=b^x, b=c^y text{ and } c = a^z, a = b x , b = c y b=c^y b = c y and c = a z c=a^z c = a z then the value of x y z xyz x y z is equal to
View Answer
Correct Answer:
C
1
Description: We have log a a a = x x x log b b b log b = y y y log c c c and loc c c c = z z z log a a a ∴ therefore ∴ log a a a log b b b log c c c = x y z xyz x y z log a log b log c c c ⇒ x y z = 1 Rightarrow xyz = 1 ⇒ x y z = 1
Q2 :
A bill for Rs. 40 is paid by means for Rs. 5 notes and Rs. 10 notes. Seven notes are used in all. If x x x is the number of Rs. 5 notes and y y y is the number of Rs 10 notes then
A
x + y = 7 and x + 2 y = 4 0 x + y = 7 text{ and } x + 2y = 40 x + y = 7 and x + 2 y = 4 0
B
x + y = 7 and x + 2 y = 8 x + y = 7 text{ and } x + 2y = 8 x + y = 7 and x + 2 y = 8
C
x + y = 7 and 2 x + y = 8 x + y = 7 text{ and } 2x + y = 8 x + y = 7 and 2 x + y = 8
D
x + y = 7 and 2 x + y = 4 0 x + y = 7 text{ and } 2x + y = 40 x + y = 7 and 2 x + y = 4 0
View Answer
Correct Answer:
B
x + y = 7 and x + 2 y = 8 x + y = 7 text{ and } x + 2y = 8 x + y = 7 and x + 2 y = 8
Description: Given, 5 x + 1 0 y = 4 0 5x + 10y = 40 5 x + 1 0 y = 4 0 i.e., x + 2 y = 8 x + 2y = 8 x + 2 y = 8 and x + y = 7 x + y = 7 x + y = 7 . After solving both the equations, we have x = 6 x = 6 x = 6 and y = 1 y = 1 y = 1
Q3 :
if 1 + 5 5 7 2 9 = 1 + x 2 7 sqrt{1 + frac{55}{729}} = 1 + frac{x}{27} 1 + 7 2 9 5 5 = 1 + 2 7 x , then the value of x x x is
View Answer
Description: = 1 + x 2 7 = 7 8 4 7 2 9 = 2 8 2 7 = 1 + 1 2 7 = 1 + frac{x}{27} = sqrt{frac{784}{729}} = frac{28}{27} = 1 + frac{1}{27} = 1 + 2 7 x = 7 2 9 7 8 4 = 2 7 2 8 = 1 + 2 7 1
Hence the value of x x x = 1
Q4 :
If 5 x 3 + 5 x 2 − 6 x + 9 5x^3 + 5x^2 - 6x + 9 5 x 3 + 5 x 2 − 6 x + 9 is divided by ( x + 3 ) (x + 3) ( x + 3 ) , then the remainder is:
View Answer
Description: R = f ( − 3 ) = 5 ( − 3 ) 3 + 5 ( − 3 ) 2 − 6 ( − 3 ) + 9 text{R } = fleft(-3right) = 5left(-3right)^3 + 5left(-3right)^2 - 6(-3) + 9 R = f ( − 3 ) = 5 ( − 3 ) 3 + 5 ( − 3 ) 2 − 6 ( − 3 ) + 9
= − 6 3 = - 63 = − 6 3
Q5 :
If x + y = 2 x + y = 2 x + y = 2 , then the value of x 4 + y 4 − x 3 y 2 − x 2 y 3 + 1 6 x y x^4 + y^4 - x^3y^2 - x^2y^3 + 16xy x 4 + y 4 − x 3 y 2 − x 2 y 3 + 1 6 x y is equal to
View Answer
Description: x 4 + y 4 − x 3 y 2 − x 2 y 3 + 1 6 x y [ ( x + y ) 2 − 2 x y ] 2 − 4 x 2 y 2 + 1 6 x y ( x + y ) 4 − 4 ( x + y ) 2 x y + 4 x 2 y 2 − 4 x 2 y 2 + 1 6 x y ( x + y = 2 given ) ( x + y ) 4 = 2 4 = 2 × 2 × 2 × 2 = 1 6 begin{aligned} & x^4 + y^4 - x^3y^2 - x^2y^3 + 16xy \ & [(x + y)^2 - 2xy]^2 - 4x^2y^2 + 16xy \ & (x + y)^4 - 4(x + y)^2 xy + 4x^2y^2 - 4x^2y^2 + 16xy \ & (x + y = 2 text{ given}) \ & (x + y)^4 = 2^4 = 2 times 2 times 2 times 2 = 16 end{aligned} x 4 + y 4 − x 3 y 2 − x 2 y 3 + 1 6 x y [ ( x + y ) 2 − 2 x y ] 2 − 4 x 2 y 2 + 1 6 x y ( x + y ) 4 − 4 ( x + y ) 2 x y + 4 x 2 y 2 − 4 x 2 y 2 + 1 6 x y ( x + y = 2 given ) ( x + y ) 4 = 2 4 = 2 × 2 × 2 × 2 = 1 6
Q6 :
If the roots of the equation a x 2 + 2 b x + c = 0 ax^2 + 2bx + c = 0 a x 2 + 2 b x + c = 0 are α and β alpha text{ and } beta α and β is equal to
B
− 2 b a c -frac{2b}{sqrt{ac}} − a c 2 b
C
2 b a c frac{2b}{sqrt{ac}} a c 2 b
D
− b a c frac{-b}{sqrt{ac}} a c − b
View Answer
Correct Answer:
B
− 2 b a c -frac{2b}{sqrt{ac}} − a c 2 b
Description: = α + β = − 2 b a , α β = c a =alpha + beta = - frac{2b}{a}, alphabeta = frac{c}{a} = α + β = − a 2 b , α β = a c
= α β + β α = α + β α β = − 2 b a c a = − 2 b a c =sqrt{frac{alpha}{beta}} + sqrt{frac{beta}{alpha}} = frac{alpha + beta}{sqrt {alphabeta}} = frac{-frac{2b}{a}}{sqrt{frac{c}{a}}} = frac{-2b}{sqrt{ac}} = β α + α β = α β α + β = a c − a 2 b = a c − 2 b
Q7 :
If 2 x = 4 y = 8 z 2^x = 4^y = 8^z 2 x = 4 y = 8 z and x y z = 2 8 8 xyz = 288 x y z = 2 8 8 , then 1 2 x + 1 4 y + 1 8 z frac{1}{2x} + frac{1}{4y} + frac{1}{8z} 2 x 1 + 4 y 1 + 8 z 1 is equal to
View Answer
Correct Answer:
A
1 1 8 frac{11}{8} 8 1 1
Description: 2 x = 2 2 y = 2 3 z 2^x = 2^{2y} = 2^{3z} 2 x = 2 2 y = 2 3 z
x = 2 y = 3 z x = 2y =3z x = 2 y = 3 z
( 3 z ) ( 3 2 z ) z = 2 8 8 (3z) biggl(frac{3}{2}z biggr)z = 288 ( 3 z ) ( 2 3 z ) z = 2 8 8
or z 3 = 2 8 8 × 2 9 = 5 7 6 9 = 6 4 text{ or } z^3 = frac{288 times 2}{9} = frac{576}{9} = 64 or z 3 = 9 2 8 8 × 2 = 9 5 7 6 = 6 4
z = 4 , x = 1 2 , y = 6 z = 4, x = 12, y = 6 z equal to 4 , x equal 1 2 and y = 6
1 2 x + 1 4 y + 1 8 z = 1 2 4 + 1 2 4 + 1 2 4 = 3 2 4 = 8 frac{1}{2x} + frac{1}{4y} + frac{1}{8z} = frac{1}{24} + frac{1}{24} + frac{1}{24} = frac{3}{24} = 8 2 x 1 + 4 y 1 + 8 z 1 = 2 4 1 + 2 4 1 + 2 4 1 = 2 4 3 = 8
Q8 :
if ( a b ) x − 1 = ( b a ) x − 3 Big(frac{a}{b} Big)^{x-1} = Big(frac{b}{a}Big)^{x-3} ( b a ) x − 1 = ( a b ) x − 3 , then the value of x x x is
View Answer
Description: ( a b ) x − 1 = ( b a ) x − 3 biggl(frac{a}{b}biggr)^{x-1} = biggl(frac{b}{a}biggr)^{x-3} ( b a ) x − 1 = ( a b ) x − 3
or ( a b ) x − 1 = ( a b ) − x − 3 text{or }biggl(frac{a}{b}biggr)^{x-1} = biggl(frac{a}{b}biggr)^{-x-3} or ( b a ) x − 1 = ( b a ) −( x − 3)
∴ x − 1 = − x + 3 therefore quad x-1 = -x + 3 ∴ x − 1 = − x + 3
2 x = 4 2x = 4 2 x = 4
x = 2 x = 2 x = 2
Q9 :
The solution of the equation 2 x − 7 = 2 5 6 2^{x-7} = 256 2 x − 7 = 2 5 6 is
View Answer
Description: 2 x − 7 = 2 5 6 = 2 8 ∴ x − 7 = 8 or x = 1 5 begin{aligned} 2^{x-7} &= 256 &= 2^8 therefore x-7 &= 8 text{or } x &= 15 end{aligned} 2 x − 7 ∴ x − 7 or x = 2 5 6 = 2 8 = 8 = 1 5
Q10 :
x x x varies inversely as the square of y y y . Given that y = 2 y=2 y = 2 for x = 1 x=1 x = 1 . The value of x x x for y = 6 y=6 y = 6 will be equal to
View Answer
Correct Answer:
D
1 9 frac{1}{9} 9 1
Description: By question, x ∝ 1 y 2 ⇒ x = k 1 y 2 x propto frac{1}{y^2} Rightarrow x = k quad frac{1}{y^2} x ∝ y 2 1 ⇒ x = k y 2 1
[where k k k is a constant]
⇒ x y 2 = k Rightarrow xy^2 = k ⇒ x y 2 = k
Here y = 2 y = 2 y = 2 for x = 1 x = 1 x = 1
then 1 × 4 = k 1 times 4 = k 1 × 4 = k
⇒ k = 4 Rightarrow k = 4 ⇒ k = 4
Now, if y = 6 then x × 3 6 = 4 y = 6 quad text{ then } quad x times 36 = 4 y = 6 then x × 3 6 = 4
⇒ x = 1 9 Rightarrow x = frac{1}{9} ⇒ x = 9 1
Page: