Home > Quantitative Aptitude Questions > Algebra Questions Answers

Algebra Questions Answers

Q1 :

If a=bx,b=cy and c=az,a=b^x, b=c^y text{ and } c = a^z,b=cyb=c^y  and c=azc=a^z then the value of xyzxyz is equal to

A
  

–1

B
  0
C
  1
D
  

abcabc

View Answer
Correct Answer: C 1
Description:

We have log aa = xx log bb
log = yy log cc and
loc cc = zz log aa
 therefore log aa log bb log cc
= xyzxyz log log log cc  xyz=1Rightarrow xyz = 1

Q2 :

A bill for Rs. 40 is paid by means for Rs. 5 notes and Rs. 10 notes. Seven notes are used in all. If xx is the number of Rs. 5 notes and yy is the number of Rs 10 notes then

A
  

x+y=7 and x+2y=40x + y = 7 text{ and } x + 2y = 40

B
  

x+y=7 and x+2y=8x + y = 7 text{ and } x + 2y = 8

C
  

x+y=7 and 2x+y=8x + y = 7 text{ and } 2x + y = 8

D
  

x+y=7 and 2x+y=40x + y = 7 text{ and } 2x + y = 40

View Answer
Correct Answer: B

x+y=7 and x+2y=8x + y = 7 text{ and } x + 2y = 8

Description:

Given, 5x+10y=405x + 10y = 40 i.e., x+2y=8x + 2y = 8 and x+y=7x + y = 7.
After solving both the equations, we have x=6x = 6 and y=1y = 1

Q3 :

if 1+55729=1+x27sqrt{1 + frac{55}{729}} = 1 + frac{x}{27},  then the value of xx is

A
  

1

B
  

3

C
  

5

D
  

7

View Answer
Correct Answer: A

1

Description:

=1+x27=784729=2827=1+127= 1 + frac{x}{27} = sqrt{frac{784}{729}} = frac{28}{27} = 1 + frac{1}{27}

Hence the  value of xx = 1

Q4 :

If 5x3+5x26x+95x^3 + 5x^2 - 6x + 9 is divided by (x+3)(x + 3), then the remainder is:

A
  

135

B
  

-135

C
  

63

D
  

-63

View Answer
Correct Answer: D

-63

Description:

=f(3)=5(3)3+5(3)26(3)+9text{R } = fleft(-3right) = 5left(-3right)^3 + 5left(-3right)^2 - 6(-3) + 9

=63= - 63

Q5 :

If x+y=2x + y = 2, then the value of x4+y4x3y2x2y3+16xyx^4 + y^4 - x^3y^2 - x^2y^3 + 16xy is equal to

A
  

16

B
  

32

C
  

4

D
  

2

View Answer
Correct Answer: A

16

Description:

x4+y4x3y2x2y3+16xy [(x+y)22xy]24x2y2+16xy (x+y)44(x+y)2xy+4x2y24x2y2+16xy (x+y=2 given) (x+y)4=24=2×2×2×2=16begin{aligned} & x^4 + y^4 - x^3y^2 - x^2y^3 + 16xy \ & [(x + y)^2 - 2xy]^2 - 4x^2y^2 + 16xy \ & (x + y)^4 - 4(x + y)^2 xy + 4x^2y^2 - 4x^2y^2 + 16xy \ & (x + y = 2 text{ given}) \ & (x + y)^4 = 2^4 = 2 times 2 times 2 times 2 = 16 end{aligned}

Q6 :

If the roots of the equation ax2+2bx+c=0ax^2 + 2bx + c = 0 are α and βalpha text{ and } beta is equal to 

A
  

2bacfrac{2b}{ac}

B
  

2bac-frac{2b}{sqrt{ac}}

C
  

2bacfrac{2b}{sqrt{ac}}

D
  

bacfrac{-b}{sqrt{ac}}

View Answer
Correct Answer: B

2bac-frac{2b}{sqrt{ac}}

Description:

=α+β=2ba,αβ=ca=alpha + beta = - frac{2b}{a}, alphabeta = frac{c}{a}

=αβ+βα=α+βαβ=2baca=2bac=sqrt{frac{alpha}{beta}} + sqrt{frac{beta}{alpha}} = frac{alpha + beta}{sqrt {alphabeta}} = frac{-frac{2b}{a}}{sqrt{frac{c}{a}}} = frac{-2b}{sqrt{ac}}

Q7 :

If 2x=4y=8z2^x = 4^y = 8^z and xyz=288xyz = 288, then 12x+14y+18zfrac{1}{2x} + frac{1}{4y} + frac{1}{8z} is equal to 

A
  

118frac{11}{8}

B
  

1124frac{11}{24}

C
  

1148frac{11}{48}

D
  

1196frac{11}{96}

View Answer
Correct Answer: A

118frac{11}{8}

Description:

2x=22y=23z2^x = 2^{2y} = 2^{3z}

x=2y=3zx = 2y =3z

(3z)(32z)z=288(3z) biggl(frac{3}{2}z biggr)z = 288

 or z3=288×29=5769=64text{ or } z^3 = frac{288 times 2}{9} = frac{576}{9} = 64

z=4,x=12,y=6z = 4, x = 12, y = 6

12x+14y+18z=124+124+124=324=8frac{1}{2x} + frac{1}{4y} + frac{1}{8z} = frac{1}{24} + frac{1}{24} + frac{1}{24} = frac{3}{24} = 8

Q8 :

if  (ab)x1=(ba)x3Big(frac{a}{b} Big)^{x-1} = Big(frac{b}{a}Big)^{x-3}, then the value of xx is 

A
  

1

B
  

2

C
  

3

D
  

4

View Answer
Correct Answer: B

2

Description:

(ab)x1=(ba)x3biggl(frac{a}{b}biggr)^{x-1} = biggl(frac{b}{a}biggr)^{x-3}

or (ab)x1=(ab)x3text{or }biggl(frac{a}{b}biggr)^{x-1} = biggl(frac{a}{b}biggr)^{-x-3}

x1=x+3therefore quad x-1 = -x + 3

2x=42x = 4

x=2x = 2

Q9 :

The solution of the equation 2x7=2562^{x-7} = 256 is

A
  

7

B
  

8

C
  

15

D
  

1

View Answer
Correct Answer: C

15

Description:

2x7=256 =28 x7=8 or x=15begin{aligned} 2^{x-7} &= 256 &= 2^8 therefore x-7 &= 8 text{or } x &= 15 end{aligned}

Q10 :

xx varies inversely as the square of yy. Given that y=2y=2 for x=1x=1. The value of xx for y=6y=6 will be equal to

A
  3
B
  9
C
  

13frac{1}{3}

D
  

19frac{1}{9}

View Answer
Correct Answer: D

19frac{1}{9}

Description:

By question, x1y2x=k1y2x propto frac{1}{y^2} Rightarrow x = k quad frac{1}{y^2}

[where kk is a constant]

xy2=kRightarrow xy^2 = k

Here y=2y = 2 for x=1x = 1

then 1×4=k1 times 4 = k

k=4Rightarrow k = 4

Now, if  y=6 then x×36=4y = 6 quad text{ then } quad x times 36 = 4
x=19Rightarrow x = frac{1}{9}

Page: