Home > Quantitative Aptitude Questions > Algebra Questions Answers

Algebra Questions Answers

Q11 :

x4mx3+2x25x+8=0x^4 - mx^3 + 2x^2 - 5x + 8 = 0, when divided by x2x - 2, gives remainder as 3m3m. Then the value of 3m3m is equal to

A
  

228frac{-22}{8}

B
  

-2

C
  

2

D
  

228frac{22}{8}

View Answer
Correct Answer: C

2

Description:

f(2)=3mf(2) = 3m

168m+810+8=3mRightarrow 16 - 8m + 8 - 10 + 8 = 3m

228m=3mm=2Rightarrow 22 - 8m = 3m Rightarrow m =2

Q12 :

If xm=yn=zp,xyz=1 and m0x^m = y^n = z^p, xyz = 1 text{ and } m ne 0, then 1m+1n+1pfrac{1}{m} + frac{1}{n} + frac{1}{p} is equal to

A
  

0

B
  

3

C
  

-2

D
  

-3

View Answer
Correct Answer: A

0

Description:

Let xm=yn=zp=ktext{Let } x^m = y^n = z^p = k

mlogx=nlogy=plogz=cRightarrow m log x = n log y = p log z = c

logx=cm,logy=cn,logz=cptherefore log x = frac{c}{m}, log y = frac{c}{n}, log z = frac{c}{p}

Now, given 1m+1n+1pfrac{1}{m} + frac{1}{n} + frac{1}{p}

=1c(logx+logy+logz)=frac{1}{c} (log x + log y + log z)

=1clog(xyz)=0=frac{1}{c} log (xyz) = 0

[log(xyz)=log1=0][because log (xyz) = log 1 = 0]

Q13 :

The value of kk, for which the system of equations x+2y+7=0x + 2y + 7 = 0 and 2x+ky+14=02x + ky + 14 = 0 will have infinitely many solutions, is

A
  

2

B
  

4

C
  

6

D
  

8

View Answer
Correct Answer: B

4

Description:

For k=4k = 4, the equations are x+2y+7=0x + 2y + 7 = 0 and 2x+4y+14=0=2(x+2y+7)2x + 4y + 14 = 0 = 2 (x + 2y + 7)

[a1a2=b1b2=c1c2]Bigg[because dfrac{a_1}{a_2} = dfrac{b_1}{b_2} = dfrac{c_1}{c_2}Bigg]

Thus, the given equations have infinitely many solutions for k=4k = 4

Q14 :

Roots of the equation x2+x(2p2)2p2=0x^2 + x(2 - p^2) - 2p^2 = 0 are

A
  

p2 and 2-p^2 text{ and } -2

B
  

p2 and 2p^2 text{ and } -2

C
  

p2 and 2-p^2 text{ and } 2

D
  

p2 and 2p^2 text{ and } 2

View Answer
Correct Answer: B

p2 and 2p^2 text{ and } -2

Description:

On the basis of quadratic equation, we solve the given equation for xx, we get

x=(2p2)±(2p2)2+8p22x = frac{-Big(2 - p^2Big) pm sqrt{Big(2 - p^2Big)^2 + 8p^2}}{2}

=2+p2±(2+p2)2= frac{-2 + p^2 pm (2 + p^2)}{2}

=p2,2= p^2, -2

Q15 :

If one root of the equation ax2+bx+c=0,a0ax^2 + bx + c = 0, a ne 0, is reciprocal of the other, then

A
  

b=cb = c

B
  

a=ca = c

C
  

a=0a = 0

D
  

b=0b = 0

View Answer
Correct Answer: B

a=ca = c

Description:

Let the rots of the given equation be M and M and 1MM text{ and }frac{1}{text{M}}
 therefore Product of the roots =1M=ca=1= text{M } cdot frac{1}{text{M}} = frac{c}{a} = 1

a=ctherefore a = c

Q16 :

If αalpha and βbeta are the roots of the equation x2px+q=0x^2 - px + q = 0, then the equation whose roots are αβ+α+βalpha beta + alpha + beta and αβαβalpha beta - alpha - beta is

A
  

x2+qxp=0x^2 + qx - p = 0

B
  

x2+2qx+p2+q2=0x^2 + 2qx + p^2 + q^2 = 0

C
  

x22qx+q2p2=0x^2 - 2qx + q^2 - p^2 = 0

D
  

x2+2qx+p2q2=0x^2 + 2qx + p^2 - q^2 = 0

View Answer
Correct Answer: C

x22qx+q2p2=0x^2 - 2qx + q^2 - p^2 = 0

Description:

Use Given equation with αalpha and βbeta are roots, then
α+β=(p)1=palpha + beta = frac{-(-p)}{1} = p

αβ=q1=qalphabeta = frac{q}{1} = q

Now the quadratic equation of roots αβ+α+β and αβαβalphabeta + alpha + beta text{ and } alpha beta - alpha - beta is

[x(αβ+α+β)][x(αβαβ)]=0[x - (alphabeta + alpha + beta)] [x - (alphabeta - alpha - beta)] = 0

(xqp)(xq+p)=0Rightarrow (x - q - p) (x - q + p ) = 0

x22qx+q2p2=0Rightarrow x^2 - 2qx + q^2 - p^2 = 0

Q17 :

Roots of the equation (xb)(xc)(ab)(ac)a2+(xa)(xc)(bc)(ba)b2=x2frac{(x - b)(x -c)}{(a - b)(a - c)} a^2 + frac{(x - a)(x - c)}{(b - c)(b - a)}b^2 = x^2 are

A
  

1, 1

B
  

a, 0

C
  

b, 0

D
  

a, b

View Answer
Correct Answer: D

a, b

Description:

Apply the formula,

x=b±D2ax = frac{-b pm sqrt{text{D}}}{2a}

Q18 :

Solution of 42x=1324^{2x} = frac{1}{32} is

A
  

54frac{5}{4}

B
  

54frac{-5}{4}

C
  

34frac{3}{4}

D
  

52frac{-5}{2}

View Answer
Correct Answer: B

54frac{-5}{4}

Description:

Given 42x=132=254^{2x} = frac{1}{32} = 2^{-5}

24x=25Rightarrow 2^{4x} = 2^{-5}

4x=5x=54Rightarrow 4x = -5 Rightarrow x = frac{-5}{4}

Q19 :

If 102y=2510^{2y} = 25, then to 10y10^{-y} equals

A
  

15-frac{1}{5}

B
  

1625frac{1}{625}

C
  

150frac{1}{50}

D
  

15frac{1}{5}

View Answer
Correct Answer: D

15frac{1}{5}

Description:

Given, 102y=2510^{2y} = 25

(10y)2=25Rightarrow (10^y)^2 = 25

10y=5Rightarrow 10^y = 5

110y=15[110y=10y]therefore frac{1}{10^y} = frac{1}{5} Big[because frac{1}{10^y} = 10^{-y}Big]

10y=15because 10^{-y} = frac{1}{5}

Q20 :

If x=213+213x = 2^frac{1}{3} + 2^frac{1}{3}, then the value of 2x36x2x^3 - 6x will be:

A
  

5

B
  

6

C
  

8

D
  

10

View Answer
Correct Answer: A

5

Description:

Given

x=213+213x = 2^frac{1}{3} + 2^frac{1}{3}

on cubing both side, we get

x3=2+21+3×213×213(213+213)x^3 = 2 + 2^{-1} + 3 times 2^{frac{1}{3}} times 2^{-frac{1}{3}} (2^frac{1}{3} + 2^{-frac{1}{3}})

x3=2+12+3×213×121/3(213+121/3)Rightarrow x^3 = 2 + frac{1}{2} + 3 times 2^frac{1}{3} times frac{1}{2^{1/3}} Big(2^frac{1}{3} + frac{1}{2^{1/3}}Big)

2x36x=5Rightarrow 2x^3 - 6x = 5

Page: