Home > Quantitative Aptitude Questions > Algebra Questions Answers

Algebra Questions Answers

Q21 :

If a+b+c=2sa + b + c = 2s, then the value of (sa)2+(sb)2+(sc)2+s2(s - a)^2 + (s - b)^2 + (s - c)^2 + s2 will be:

A
  

s2+a2+b2+c2s^2 + a^2 + b^2 + c^2

B
  

a2+b2+c2a^2 + b^2 + c^2

C
  

s2a2b2c2s^2 - a^2 - b^2 - c^2

D
  

4s2a2b2c24s^2 - a^2 - b^2 - c^2

View Answer
Correct Answer: B

a2+b2+c2a^2 + b^2 + c^2

Description:

Given

a+b+c=2sa + b + c = 2s

then the value of (sa)2+(sb)2+(sc)2+s2(s - a)^2 + (s - b)^2 + (s - c)^2 + s^2

=s2+a22as+s2+b22bs+s2+c22cs+s2= s^2 + a^2 - 2as + s^2 + b^2 - 2bs + s^2 + c^2 - 2cs + s^2

=4s22as2bs2cs+a2+b2+c2 =4s22s(a+b+c)+a2+b2+c2 =4s22s×2s+a2+b2+c2 =a2+b2+c2begin{aligned} &=4s^2 - 2as - 2bs - 2cs + a^2 + b^2 + c^2 &=4s^2 - 2s(a + b + c) + a^2 + b^2 + c^2 &=4s^2 - 2s times 2s + a^2 + b^2 + c^2 &=a^2 + b^2 + c^2 end{aligned}

Q22 :

If a3=117+b3a^3 = 117 + b^3 and a=3+ba = 3 + b, then the value of a+ba + b is:

A
  

±7pm 7

B
  

49

C
  

0

D
  

±13pm 13

View Answer
Correct Answer: A

±7pm 7

Description:

Given,

a3=117+b3 (3+b)3=17+b3(a=3+b)begin{aligned} &a^3 = 117 + b^3 & Rightarrow (3 + b)^3 = 17 + b^3 quadquad (because a = 3 + b) end{aligned}

27+b3+9b(3+b)=117+b3 b2+3b10=0 b=2,5a=3+b If b=2, then a=5 If b=5, then a=2 a+b=2+5 r25 i.e. ±7begin{aligned} & Rightarrow 27 +b^3 + 9b (3 + b) = 117 + b^3 & Rightarrow b^2 + 3b - 10 = 0 & Rightarrow quadquad b = 2, -5, & because ;quadquad a = 3 + b & text{If } ;;quadquad b = 2, text{ then } a = 5 & text{If } ;;quadquad b = -5, text{ then } a = -2 & ;quadquadquad a + b = 2 + 5 & r - 2 - 5 text{ i.e. } pm 7 end{aligned}

Q23 :

If am+5=22m+10a^{m + 5} = 2^{2m + 10}, then, using the law of indices, the value of aa is:

A
  

3

B
  

4

C
  

5

D
  

6

View Answer
Correct Answer: B

4

Description:

Given

am+5=22m+10 =22(m+5) am+5=4m+5 a=4[ Power is same]begin{aligned} a^{m + 5} &= 2^{2m + 10} &= 2^{2(m + 5)} therefore quad a^{m + 5} &= 4^{m + 5} therefore quad;;quad a &= 4 quadquad[because text{ Power is same}] end{aligned}

Q24 :

If α,β,γalpha, beta, gamma and δdelta are the roots of the polynomial equation (x23x+4)(x2+2x+5)=0(x^2 - 3x + 4)(x^2 + 2x + 5) = 0 then quadratic equation whose roots are α+β+γ+δalpha + beta + gamma + delta and αβγδalpha beta gamma delta is:

A
  

x2x+20=0x^2 - x + 20 = 0

B
  

x25x+20=0x^2 - 5x + 20 = 0

C
  

x2+x20=0x^2 + x - 20 = 0

D
  

x2x10=0x^2 - x - 10 = 0

View Answer
Correct Answer: A

x2x+20=0x^2 - x + 20 = 0

Description:

Given, (x23x+4)(x2+2x+5)=0(x^2 - 3x + 4)(x^2 + 2x + 5) = 0

Let α,βalpha,beta be the roots of x23x+4=0x^2 - 3x + 4 = 0

α+β=3therefore alpha + beta = 3 and αβ=4alphabeta = 4 (By using formula) and γ,δgamma, delta be the roots of x2+2x+5=0x^2 + 2x + 5 = 0

γ+δ=2therefore gamma + delta = -2 and γδ=5gammadelta = 5

α+β+γ+δ=3+(2)=1=5(let)   and αβγδ=4×5=20=P(let)begin{aligned} & therefore alpha + beta + gamma + delta = 3 + (-2) = 1 = 5 text{(let) } & text{ and } alphabetagammadelta = 4 times 5 = 20 = text{P} text{(let)}end{aligned}

therefore The required equation is x2Sx+P=0x^2 - text{S}x + text{P} = 0

x2x+20=0Rightarrow x^2 - x + 20 = 0

Q25 :

The solution for real xx in equation x22x+1<0x^2 - 2x + 1 lt 0 is:

A
  

1

B
  

-1

C
  

0

D
  

non-existent

View Answer
Correct Answer: D

non-existent

Description:

Quadratic equation x22x+1<0x^2 - 2x + 1 < 0

(x1)2<0,Rightarrow (x - 1)^2 < 0,which is impossible as the square of a real no. is never negative.

therefore (D) is Answers

Q26 :

If x+y=1x + y = 1, then the largest value of xyxy is

A
  

1

B
  

0.5

C
  

0.4

D
  

0.25

View Answer
Correct Answer: D

0.25

Description:

Given,x+y=1 y=1x xy=x(1x) =xx214+14 =14(x2x+14) =14(x12)214 ( square of a real no. 0)  Largest value =14=0.25begin{aligned} Given, x + y &= 1 therefore quad y &= 1 -x therefore quad xy &= x(1 - x) &= x - x^2 - frac{1}{4} + frac{1}{4} &=frac{1}{4} - Big(x^2 - x + frac{1}{4}Big) &= frac{1}{4} - Big(x - frac{1}{2}Big)^2 le frac{1}{4} &(because text{ square of a real no. } ge 0 ) therefore text{ Largest value } &= frac{1}{4} = 0.25 end{aligned}

Q27 :

If xy=1x - y = 1 and x2+y2=41x^2 + y^2 = 41, then the value of x+yx + y will be:

A
  

±9pm9

B
  

±1pm 1

C
  

5 or 45 text{ or } 4

D
  

5 or 4-5 text{ or } -4

View Answer
Correct Answer: A

±9pm9

Description:

We know that (x+y)2+(xy)2=2(x2+y2)(x + y)^2 + (x - y)^2 = 2(x^2 + y^2)

(x+y)2+12=2(41)therefore quad (x + y)^2 + 1^2 = 2(41)

(x+y)2=821therefore quad(x + y)^2 = 82-1

x+y=81=±9therefore quad x + y = sqrt{81} = pm 9

Q28 :

If xy+yx=103sqrt{dfrac{x}{y}} + sqrt{dfrac{y}{x}} = dfrac{10}{3} and x+y=10x + y =10, then the value of xyxy will be:

A
  

36

B
  

24

C
  

16

D
  

9

View Answer
Correct Answer: D

9

Description:

Given, xy+yx=103sqrt{dfrac{x}{y}} + sqrt{dfrac{y}{x}} = dfrac{10}{3}

(x)2+(y)2xy=103Rightarrow frac{big(sqrt{x}big)^2 + big(sqrt{y}big)^2}{sqrt{xy}} = frac{10}{3}

x+yxy=103Rightarrow frac{x + y}{sqrt{xy}} = frac{10}{3}

10xy=103[x+y=10]Rightarrow frac{10}{sqrt xy} = frac{10}{3} quad [because x + y = 10]

xy=9therefore quad xy = 9

Q29 :

If a=3a = 3 and bc=(bc)+(b2c2)2bcb * c = frac{sqrt{(b-c) + (b^2 - c^2)}}{2bc}  then calculate a×bca times b * c for b=7,c=3b = 7, c = 3

A
  

117frac{sqrt{11}}{7}

B
  

117frac{11}{7}

C
  

117frac{11}{sqrt{7}}

D
  

117sqrt{frac{11}{7}}

View Answer
Correct Answer: A

117frac{sqrt{11}}{7}

Description:

a×bc=a×(bc)+(b2c2)2bc =3×(73)+(7232)2×7×3 =3×4+(499)2×21 =3×4+402×21 =3×2112×21=117 =117begin{aligned} a times b * c &= a times frac{sqrt{(b-c) + (b^2 - c^2)}}{2bc} \ \ &= 3 times frac{sqrt{(7 - 3) + (7^2 - 3^2)}}{2 times 7 times 3} \ \ &= 3 times frac{sqrt{4 + (49 - 9)}}{2 times 21} \ \ &= 3 times frac{sqrt{4 + 40}}{ 2 times 21} \ \ &= 3 times frac{2sqrt11}{2 times 21} = frac{sqrt11}{7} \ \ &=frac{sqrt11}{7} end{aligned}

Page: