Home > Quantitative Aptitude Questions > Arithmetic Questions Answers

Arithmetic Questions Answers

Q21 :

If A and B are two sets, then A(AB)text{A} cap (text{A} cup text{B}) is equal to

A
  

A

B
  

B

C
  

ϕphi

D
  

A cap B

View Answer
Correct Answer: C

ϕphi

Description:

A(AB)=A(A’B’)text{A} cap (text{A} cup text{B})text{'} = text{A} cap (text{A'} cap text{B'})

=(AA’)B’=ϕB’=ϕ= (text{A} cap text{A'}) cap text{B'} = phi cap text{B'} = phi

Q22 :

Let N be the set of all natural numbers, E be the universal set, ϕphi be the null set and B be the unit set containing 0, i.e. B = {0}. If A is the subset of every set X, then A is equal to

A
  

N

B
  

B

C
  

ϕphi

D
  

E

View Answer
Correct Answer: C

ϕphi

Description:

Empty set is a subset of every set.

Q23 :

If nn is any whole number, n2(n21)n^2 (n^2 - 1) is always divisible by:

A
  

12

B
  

24

C
  

36

D
  

9

View Answer
Correct Answer: A

12

Description:

Here we can apply least value of whole no. in the place n2(n21)n^2 (n^2 - 1) except 0 and 1.

n2(n21)=22(221)=12n^2 (n^2 - 1) = 2^2 (2^2 - 1 ) = 12

Q24 :

The total value of a collection of coins of denominations Rs. 1.00, 50 paise, 25 paise, 10 paise and 5 paise is Rs. 380. If the number of coins of each denomination is the same then the number of one-rupee coins is:

A
  

160

B
  

180

C
  

200

D
  

220

View Answer
Correct Answer: C

200

Description:

Let the no of one-rupee coin is xx then,

100x+50x+25x+10x+5x=38000100x + 50x + 25x + 10x + 5x = 38000

x=200x = 200

Q25 :

Ice cream completely filled in a cylinder of diameter 35 cm and height 32 cm is to be served by completely filling identical disposable cones of diameter 4 cm and height 7 cm. The maximum number of persons that can be served this way is:

A
  

950

B
  

1000

C
  

1050

D
  

1100

View Answer
Correct Answer: C

1050

Description:

Maximum no. of persons:

=π(352)2×3213π(42)2×7= frac{pi Big(frac{35}{2}Big)^2 times 32}{frac{1}{3}pi Big(frac{4}{2}Big)^2 times 7}

= 1050

Q26 :

A fountain having the shape of a right circular cone is fitted into a cylindrical tank of volume V, so that the base of the tank coincides with the base of the cone and the height of the tank is the same as that of the cone. The volume of water in the tank, when it is completely filled with water from the fountain, is:

A
  

V/2

B
  

V/3

C
  

2V/3

D
  

V/4

View Answer
Correct Answer: B

V/3

Description:

Volume of water = Volume of cone

=13πr2h= frac{1}{3}pi r^2 ; h

=13 V = frac{1}{3}text{ V }

( V = Volume of Cylinder =πr2h)(because text{ V = Volume of Cylinder } = pi r^2 h )

Q27 :

Simplify: 75+48243sqrt{75} + sqrt{48} - sqrt{243}

A
  

0

B
  

232sqrt{3}

C
  

333sqrt{3}

D
  

434sqrt{3}

View Answer
Correct Answer: A

0

Description:

75+48243sqrt{75} + sqrt{48} - sqrt{243}

=53+4393=5sqrt{3} + 4sqrt{3} - 9sqrt{3}

=3(5+49)=sqrt{3}(5 + 4 -9)

=3×0=sqrt{3} times 0

=0=0

Q28 :

Solve the following—
8016.34 + 106.9 – 2006.85 – 131.428 = ?

A
  

5984.152

B
  

6074.962

C
  

5984.962

D
  

5974.962

View Answer
Correct Answer: C

5984.962

No Description Available
Q29 :

Solve the following—
0.0625+0.250= ?sqrt{0.0625} + sqrt{0.250} = text{ ?}

A
  .005
B
  0.5
C
  5
D
  None of the Above
View Answer
Correct Answer: D None of the Above
Description:

0.0625+0.250 .25+.5=.75begin{aligned} sqrt{0.0625} + sqrt{0.250} Rightarrow .25 + .5 = .75 end{aligned}

Q30 :

Solve the following Equation:
14×627÷1089=(?)3+14114 times627 div sqrt{1089} = (?)^3 + 141

A
  

555sqrt{5}

B
  

(125)3(125)^3

C
  25
D
  5
View Answer
Correct Answer: D 5
Description:

Page: