Home > Quantitative Aptitude Questions > Geometry Questions and Answers

Geometry Questions and Answers

Q1 :

The area of the circle centered at the point (1, 2) and passing through the point (4, 6) is

A
  

5π unitstext{5} pi text{ units}

B
  

10π unitstext{10} pi text{ units}

C
  

25π unitstext{25} pi text{ units}

D
  

2π unitstext{2} pi text{ units}

View Answer
Correct Answer: C

25π unitstext{25} pi text{ units}

Description:

Let xx be the radius of the circle
x2=(41)2+(62)2 =32+42 =25 =52begin{aligned} therefore x^2 &= (4 -1 )^2 + (6 - 2)^2 &= 3^2 + 4^2 &= 25 &=5^2 end{aligned}
Hence area of the circle = π.x2=25πpi.x^2 = 25pi

Q2 :

The length of the side of a square whose area is exactly equal to the area of a rectangle whose side are 6.4 m and 2.5 m is

A
  

0.6 m

B
  

2.4 m

C
  

60 m

D
  

4 m

View Answer
Correct Answer: D

4 m

Description:

Side of the square

=6.4×2.5=sqrt{ 6.4 times 2.5}
=64×2.5100=16=4m=sqrt{frac { 64 times 2.5}{100}} = sqrt{16} = 4 text m

Q3 :

Cost of erecting a fence round a square field of 625 hectares at 15 P. per metre is

A
  

Rs. 1500

B
  

Rs. 150

C
  

Rs. 500

D
  

Rs. 750

View Answer
Correct Answer: A

Rs. 1500

Description:

 cost=Perimeter×15paisetext { cost} = text {Perimeter} times 15 text{paise}

=4×side×15paise=4 times text {side} times 15 text {paise}

=4×625×10000×15paise=Rs.1500=4 times sqrt{625 times 10000} times 15 text {paise} = text Rs. 1500

Q4 :

The outer and inner radii of a metallic spherical shell are 2 cm and 1 cm respectively. If it is melted to make a solid sphere, then the radius of the sphere will be

A
  

7127frac{1}{2} cm

B
  

913 cm 9frac{1}{3} text{ cm }

C
  

713 cm7frac{1}{3} text{ cm}

D
  

3 cm

View Answer
Correct Answer: C

713 cm7frac{1}{3} text{ cm}

Description:

The volume of the metallic shell

=43π(2)343π(1)3=28π3= frac{4}{3} pi (2)^3 - frac{4}{3} pi(1)^3 = frac{28pi}{3}

But by question,

Volume of sphere =28π3= frac{28pi}{3}

43πr3=28π3r3=7r=713Rightarrow frac{4}{3}pi r^3 = frac{28pi}{3} Rightarrow r^3 = 7 Rightarrow r = 7^frac{1}{3}

Q5 :

A cone of base diameter 20 cm and height 5 cm is melted to form a sphere of radius 5 cm. The volume of the material that remains is

A
  

2 cm32 text{ cm}^3

B
  

5 cm35 text{ cm}^3

C
  

π cm3pi text{ cm}^3

D
  

zero

View Answer
Correct Answer: D

zero

Description:

 Volume of the cone =13×227×102×5text{ Volume of the cone } = frac{1}{3} times frac{22}{7} times 10^2 times 5

=1100021= frac{11000}{21}

 Volume of sphere =43π×125text{ Volume of sphere } = frac{4}{3}pi times 125

=1100021= frac{11000}{21}

Q6 :

A rectangle of sides 10cm and 8 cm is folded to form a cylinder in two different ways. The volume of the bigger cylinder thus formed is

A
  

160πcu cm frac{160}{pi} text{cu cm }

B
  

175πcu cm frac{175}{pi} text{cu cm }

C
  

200πcu cm frac{200}{pi} text{cu cm }

D
  

150πcu cm frac{150}{pi} text{cu cm }

View Answer
Correct Answer: A

160πcu cm frac{160}{pi} text{cu cm }

Description:

For the bigger cylinder,
 H =10 cm ,2πr=8text{ H } = 10 text{ cm }, 2 pi r = 8

 V =πr2 H =π(16π2)×10=160πcu cmtherefore text{ V } = pi r^2 quadtext{ H } = pi (frac{16}{pi^2}) times 10 = frac{160}{pi} text{cu cm}

Q7 :

If the length of a side of rhombus 13 cm and one of its diagonals is of length 24 cm, then the area of rhombus is

A
  

240cm2240 text{cm}^2

B
  

156cm2156 text{cm}^2

C
  

130cm2130 text{cm}^2

D
  

120cm2120 text{cm}^2

View Answer
Correct Answer: D

120cm2120 text{cm}^2

Description:

Area of rhombus

=12× product of diagonal = frac{1}{2} times text{ product of diagonal }

=12×24×10= frac{1}{2} times 24 times 10

[ small diagonal =2132122=2×5=10]Big[ because text{ small diagonal } = 2sqrt{13^2 - 12^2 } = 2 times 5 = 10 Big]

=120 sq. m = 120 text{ sq. m }

Q8 :

The volume of a right circular cylinder is 1100 cm31100 text{ cm}^3 and the radius of its base is 5cm. The area of its curved surface is

A
  

440 cm2440 text{ cm}^2

B
  

(440+25π) cm2(440 + 25 pi) text{ cm}^2

C
  

(440+50π) cm2(440 + 50pi) text{ cm}^2

D
  

450 cm2450 text{ cm}^2

View Answer
Correct Answer: A

440 cm2440 text{ cm}^2

Description:

Volume of cylinder =πr2htext{Volume of cylinder } = pi r^2h

=1100=π×5×5×h= 1100 = pi times 5 times 5 times h

h=1100π×25m=14m.Rightarrow h = frac{1100}{pi times 25} text{m} = 14text{m.}

Are of curved surface=2πrhtherefore text {Are of curved surface} = 2pi rh

=2π×5×14=440cm2= 2pi times 5 times 14 = 440 text{cm}^2

Q9 :

A square and an equilateral triangle have equal perimeters. If the area of the equilateral triangle is 163 cm216sqrt3 text{ cm}^2, then the side of the square is 

A
  

4 cm

B
  

42 cm4sqrt2 text{ cm}

C
  

62 cm6sqrt2 text{ cm}

D
  

6 cm

View Answer
Correct Answer: D

6 cm

Description:


Let side of square be xx and that of triangle is yy

4x=3y x=34y Area of triangle =34×y2 163=34×y2 y=8  and x=34×8=6 cmbegin{aligned} therefore 4x &= 3y x &= frac{3}{4}y text{Area of triangle } &= frac{sqrt3}{4} times y^2 16sqrt3 &= frac{sqrt3}{4} times y^2 y &= 8 text{ and } x &= frac{3}{4} times 8 = 6 text{ cm} end{aligned}

 

Q10 :

The height and base radius of a right circular cone are 4 and 3 cm respectively. The total surface area of the cone is 

A
  

15π cm215pi text{ cm}^2

B
  

18π cm218pi text{ cm}^2

C
  

21π cm221pi text{ cm}^2

D
  

24π cm224pi text{ cm}^2

View Answer
Correct Answer: D

24π cm224pi text{ cm}^2

Description:

Total surface are of cone =πrl+πr2= pi rl + pi r^2
=π3(3+5)=24π cm2= pi 3(3 + 5) = 24pi text{ cm}^2

Page: