Home > Quantitative Aptitude Questions > Geometry Questions and Answers

Geometry Questions and Answers

Q11 :

If both the radius and height of a cone are increased by 50%, then the volume of the cone will increase by

A
  

100%

B
  

200%

C
  

225.50%

D
  

237.50%

View Answer
Correct Answer: D

237.50%

Description:

Volume of cone =13πr2h New volume of cone =13π(32)2r232h =13π98r2h=278v  increase in volume =278vv198v % increase =198V×100V=237.5begin{aligned} text{Volume of cone } &= frac{1}{3}pi r^2h text{New volume of cone } &=frac{1}{3}pi Bigg(frac{3}{2}Bigg)^2 r^2 frac{3}{2}h &= frac{1}{3}pifrac{9}{8}r^2h = frac{27}{8}v text{ increase in volume } &= frac{27}{8} v - v frac{19}{8}v % text{ increase } &= frac{frac{19}{8}V times 100}{V} = 237.5 end{aligned}

Q12 :

If a solid sphere of radius 34frac{3}{4} m is melted and formed into a right circular cylinder of height 1 m, then the radius of the base of the cylinder will be

A
  

0.75 m

B
  

1.00 m

C
  

1.25 m

D
  

1.50 m

View Answer
Correct Answer: A

0.75 m

Description:

Volume of the sphere =43π34×34×34 m3 By question πr2h=43π34×34×34 r2=34×34(h=1, given) r=34=0.75 m begin{aligned} text{Volume of the sphere } &= frac{4}{3}pifrac{3}{4} times frac{3}{4} times frac{3}{4} text{ m}^3 text{By question } pi r^2h &= frac{4}{3}pifrac{3}{4} times frac{3}{4} times frac{3}{4} r^2 &= frac{3}{4} times frac{3}{4} (h = 1, text{ given}) therefore r &= frac{3}{4} = 0.75 text{ m } end{aligned}

Q13 :

The radius of the base of a right circular cylinder is halved and the height is increase by 50%. The ratio of the volume of the original cylinder to that of the new cylinder will be

A
  

2 : 3

B
  

8 : 3

C
  

3 : 1

D
  

4 : 1

View Answer
Correct Answer: B

8 : 3

Description:

V0Vn=πr3hπ(r2)2.32h=83dfrac{V_0}{V_n} = dfrac{pi r^3h}{pibiggl(dfrac{r}{2}biggr)^2 . dfrac{3}{2}h} = dfrac{8}{3}

Q14 :

The orthocentre of the triangle whose vertices are (0, 0), (3, 0) and (0, 4) is

A
  

(0, 0)

B
  

(0, 2)

C
  

(2, 0)

D
  

(2, 2)

View Answer
Correct Answer: A

(0, 0)

Description:


Here AB =(30)2+(00)2=3text{Here AB } = sqrt{(3 - 0)^2 + (0 - 0)^2 } = 3

Similary BC =5 and CA =4text{Similary BC } = 5 text{ and CA } = 4

Rightarrow The given triangle is  a right angle and hence all the three altitudes intersect at the point A  (0, 0)

The orthocentre =(0,0)therefore text{The orthocentre } = (0,0)

Q15 :

If ABCD is a rhombus, then 

A
  

AC2+BD2=6AB2text{AC}^2 + text{BD}^2 = 6text{AB}^2

B
  

AC2+BD2=5AB2text{AC}^2 + text{BD}^2 = 5text{AB}^2

C
  

AC2+BD2=4AB2text{AC}^2 + text{BD}^2 = 4text{AB}^2

D
  

AC2+BD2=3AB2text{AC}^2 + text{BD}^2 = 3text{AB}^2

View Answer
Correct Answer: C

AC2+BD2=4AB2text{AC}^2 + text{BD}^2 = 4text{AB}^2

Description:


ABCD is a rhombus, then
by pythagoras theorem

AC2+BD2=(OA+OC)2(OB+OD)2text{AC}^2 + text{BD}^2 = (text{OA} + text{OC})^2 (text{OB} + text{OD})^2

=4(OA2+OB2)=4AB2= 4(text{OA}^2 + text{OB}^2) = 4 text{AB}^2

Q16 :

The areas of two similar triangles are 12 cm212 text{ cm}^2 and 48 cm248 text{ cm}^2. If the height of the smaller one is 2.1 cm, then the corresponding height of the bigger triangle is

A
  

12.6 cm

B
  

8.4 cm

C
  

4.2 cm

D
  

1.05 cm

View Answer
Correct Answer: C

4.2 cm

Description:


Since ABC and DEF  are similar ,text{Since } triangle text{ABC and } triangle text{DEF } text{ are similar ,}

hEF=2.1BC ...(I)therefore frac{h}{text{EF}} = frac{2.1}{text{BC}} quadquad text{ ...(I)}

 Also 12×BC×2.1=12text{ Also } frac{1}{2} times text{BC} times 2.1 = 12

 BC =242.1 and 12× EF ×h=48Rightarrow text{ BC } = frac{24}{2.1} text{ and } frac{1}{2} times text{ EF } times h =48

 EF ×h=96Rightarrow text{ EF } times h = 96

Now by equation (I)text{Now by equation (I)}

h96h=2.1242.1h296=(2.1)224h=4.2dfrac{h}{dfrac{96}{h}} = dfrac{2.1}{frac{24}{2.1}} Rightarrow frac{h^2}{96} = frac{(2.1)^2}{24} Rightarrow h = 4.2

Q17 :

The circle x2+y28x6y+16=0x^2 + y^2 - 8x - 6y + 16 = 0

A
  

Touches the x-axis

B
  

Touches the y-axis

C
  

Touches both the axes

D
  

Do not Touch any axis

View Answer
Correct Answer: A

Touches the x-axis

Description:

The centre of the circle (4, 3) and its radius is r=16+916=3r = sqrt{16 + 9 - 16} = 3
If the circle

If the circle touches the xx-axis, then at that point yy must be zero.

therefore quad Equation of the circle becomes x28x+16=0x^2 - 8x + 16 = 0

(x4)2=0x=4Rightarrow (x - 4)^2 = 0 Rightarrow x = 4

If the circle touches the y axis, then at that point x=0x = 0.

therefore quad Equation of the circle becomes

y26y+16=0y^2 - 6y + 16 = 0

yRightarrow y is imaginary

therefore quad The given circle touches the xx-axis only at the point (4, 0)

Q18 :

The area of the circle drawn, with its diameter as the diagonal of the cube of side of length 1 cm each, is

A
  

4π3 sq cmfrac{4pi}{3} text{ sq cm}

B
  

3π2 sq cmfrac{3pi}{2} text{ sq cm}

C
  

3π4 sq cmfrac{3pi}{4} text{ sq cm}

D
  

2π3 sq cmfrac{2pi}{3} text{ sq cm}

View Answer
Correct Answer: C

3π4 sq cmfrac{3pi}{4} text{ sq cm}

Description:

Diagonal =3 cm= sqrt{3} text{ cm}

Area of the circle

=πr2=(32)2= pi r^2 = Big(frac{sqrt{3}}{2}Big)^2

=3π4=frac{3pi}{4}

Q19 :

The perimeters of an equilateral triangle and a square are the same. Then

A
  

Area of triangleArea of square=43frac{text{Area of triangle}}{text{Area of square}} = frac{4}{3}

B
  

Area of triangleArea of square=1frac{text{Area of triangle}}{text{Area of square}} = 1

C
  

Area of triangleArea of square=1.5frac{text{Area of triangle}}{text{Area of square}} = 1.5

D
  

Area of triangleArea of square<1frac{text{Area of triangle}}{text{Area of square}} lt 1

View Answer
Correct Answer: D

Area of triangleArea of square<1frac{text{Area of triangle}}{text{Area of square}} lt 1

Description:

Let the side of an equilateral triangle bexx, then perimeter =3x=3x and area of triangle =34x2=frac{sqrt{3}}{4}x^2 and side of a square = y then perimeter4y and area=y2= 4y text{ and area} = y^2


By question

3x=4yxy=433x = 4y Rightarrow frac{x}{y} = frac{4}{3}ea of triangleArea of squarefrac{text{Area of triangle}}{text{Area of square}

Area of triangleArea of square=34x2y2=34×(43)2frac{text{Area of triangle}}{text{Area of square}} =dfrac{frac{sqrt{3}}{4}x^2}{y^2} = dfrac{sqrt{3}}{4}timesBig(frac{4}{3}Big)^2

=9364<1= frac{9sqrt{3}}{64}lt 1

Q20 :

The area of the largest triangle inscribed in a semi-circle of radius R is

A
  

2 R22 text{ R}^2

B
  

R2text{R}^2

C
  

12R2frac{1}{2}text{R}^2

D
  

32R2frac{3}{2}text{R}^2

View Answer
Correct Answer: B

R2text{R}^2

Description:

Required area =12×2r×r=r2= frac{1}{2} times 2r times r = r^2

Page: