Home > Quantitative Aptitude Questions > Geometry Questions and Answers

Geometry Questions and Answers

Q31 :

The area of a trapezium is 336 sq cm. If its parallel sides are in the ratio 5 : 7  and the perpendicular distance between them be 14 cm, then the smaller of the parallel sides is:

A
  

20 cm

B
  

22 cm

C
  

24 cm

D
  

26 cm

View Answer
Correct Answer: A

20 cm

Description:

We know that Area of trapezium = 12(sum of 11 side)× distance between them frac{1}{2} (text{sum of 11 side}) times text{ distance between them }

336=12(5x+7x)×14Rightarrow quad 336 = frac{1}{2} (5x +7x ) times 14

x=4Rightarrow quad x = 4

Smaller side = 20

Q32 :

The number of spherical bullets, each bullet being 4 cm in diameter, that can be made out of a cube of lead whose edge is 44 cm, is:

A
  

2541

B
  

2551

C
  

2561

D
  

2571

View Answer
Correct Answer: A

2541

Description:

No. of Spherical bullets =volume of a cubevolume of each bullet= frac{text{volume of a cube}}{text{volume of each bullet}}

=44×44×4443×227×2×2×2= dfrac{44 times 44 times 44}{frac{4}{3} times frac{22}{7} times 2 times 2 times 2}

= 2541

Q33 :

The area of a rectangular field with sides in 2 : 1 ratio is 162 m2. There is a proposal to make a 1 m wide walking track all along the perimeter of the field. How much would be the reduction in the area?

A
  

25 m225 text{ m}^2

B
  

50 m250 text{ m}^2

C
  

75 m275 text{ m}^2

D
  

100 m2100 text{ m}^2

View Answer
Correct Answer: B

50 m250 text{ m}^2

Description:

Let the sides of rectangular field be 2x2x and xx metre. Then

Area =2x×x= 2x times x

162=2x×x162 = 2x times x

2x2=1622x^2 = 162

x2=1622=81x^2 = frac{162}{2} = 81

x=9 mx = 9 text{ m}

Thus the sides of rectangular field are of 18 m and 9 m. By making a pavement of 1 m wide, the remaining size of length and breadth will now be 16 m and 7 m.

therefore Interior area of field =16×7=112 m2= 16 times 7 = 112 text{ m}^2

Reduction in area =162112=50 m2= 162-112=50 text{ m}^2

Q34 :

If a square  of area A2frac{text{A}}{2} is cut off from a given square of area A, then the ratio of diagonal of the cut off square to that of the given square is

A
  

1:51:sqrt{5}

B
  

1:51:5

C
  

1:21:sqrt{2}

D
  

1:251:2sqrt{5}

View Answer
Correct Answer: C

1:21:sqrt{2}

Description:

Area of a bigger square =a2= a^2

Diagonal =2a=d1therefore text{Diagonal } = sqrt{2}a = d_1

Area of a smaller square =a22=x2=frac{a^2}{2} = x^2

xx =  side of smaller square ...  x=a2x = frac{a}{sqrt2}

Diagonal of  a smaller square=d2=2x= d_2 = sqrt{2}x

d2=2a2=ad_2 = sqrt{2} cdot frac{a}{sqrt2} = a

therefore  Required Ratio =d2:d1=a:2a=1:2= d_2 : d_1 = a:sqrt{2}a = 1 :sqrt{2}

Q35 :

If the diagonal AC, of a rectangle ABCD is of length 2d and it divides angle BAD in the ratio 1:2, then the area of the rectangle is equal to

A
  

2d2sqrt{2}cdot d^2

B
  

4d24d^2

C
  

22d22sqrt{2}cdot d^2

D
  

3d2sqrt{3} cdot d^2

View Answer
Correct Answer: D

3d2sqrt{3} cdot d^2

Description:

AC=2d,x+2x=90°x=30°ABAC=cos 30°text{AC} = 2d, x + 2x = 90degree Rightarrow x = 30degree frac{text{AB}}{text{AC}} = text{cos }30degree

AB =32×2d=3dtherefore text{AB } = frac{sqrt3}{2} times 2d = sqrt{3}d

BCAC=sin30°frac{text{BC}}{text{AC}} = sin 30degree


BC =AC ×12=2d×12=dtherefore text{BC } = text{AC }times frac{1}{2} = 2d times frac{1}{2} = d

Area of a rectangle =AB ×BC=3dd=3d2= text{AB } times text{BC} = sqrt{3}d cdot d = sqrt{3}d^2

Q36 :

If the sides of a triangle are 15 cm, 16 cm and 17 cm, then the area of the triangle is equal to

A
  

162116 sqrt{21} sq cm

B
  

182118 sqrt{21} sq cm

C
  

242124 sqrt{21} sq cm

D
  

302130 sqrt{21} sq cm

View Answer
Correct Answer: C

242124 sqrt{21} sq cm

Description:

=15+16+172=24text{S } = dfrac{15+16+17}{2} = 24

Area of a =s(sa)(sb)(sc)triangle = sqrt{s(s - a)(s-b)(s-c)}

=24(2415)(2416)(2417)=2421 sq. cm= sqrt{24(24-15)(24-16)(24-17)} = 24sqrt{21} text{ sq. cm}

Q37 :

The radius of a wheel is 84 cm. If the wheel makes five revolutions in 5 seconds, then the speed of the wheel, approximately, is

A
  

19 km/h

B
  

33 km/h

C
  

35 km/h

D
  

38 km/h

View Answer
Correct Answer: A

19 km/h

Description:

5 revolution in 5 sec
therefore One revolution in 1 sec
Distance covered in 1 revolution

=2πr=2×227×84=2×22×12 cm=2pi r = 2 times frac{22}{7} times 84 =2 times 22 times 12 text{ cm}

Speed =DT=2×22×121 sec cmtext{Speed } = dfrac{text{D}}{text{T}} = dfrac{2 times 22 times 12}{1text{ sec}}text{ cm}

=2×22×12100×185km/hr=19 km/hr app= frac{2 times 22 times 12}{100} times frac{18}{5} text{km/hr} =19 text{ km/hr app}

Q38 :

If the measurement of each of the interior angles of polygon is 160°160degree, then the number of sides of the polygon would be equal to

A
  

9

B
  

12

C
  

18

D
  

27

View Answer
Correct Answer: C

18

Description:

(n2)180n=160°n=18frac{(n - 2) 180 }{n} = 160degree Rightarrow n = 18

No of sides = 18

Q39 :

The earth makes a complete revolution about its axis in 24 hours. The angle through which it will turn in 4 hours and 40 minutes, is equal to

A
  

50°50degree

B
  

60°60degree

C
  

70°70degree

D
  

120°120degree

View Answer
Correct Answer: C

70°70degree

Description:

4 hrs. 40 min =4+4060=143 hrs = 4 + frac{40}{60} = frac{14}{3} text{ hrs }

Reqd. angle =36024×143=70°= frac{360}{24} times frac{14}{3} = 70degree

Page: