Home > Quantitative Aptitude Questions > Logarithm MCQs

Logarithm MCQs

Q1 :

If log (a+b3)=12(log a+log b)Big(frac{a + b}{3}Big) = frac{1}{2} left(text{log } a + text{log } b right)

A
  

a2+b2=aba^2 + b^2 = ab

B
  

a2+b2=7aba^2 + b^2 = 7ab

C
  

a2+b2=3aba^2 + b^2 = -3ab

D
  

a2+b2=3aba^2 + b^2 = 3ab

View Answer
Correct Answer: B

a2+b2=7aba^2 + b^2 = 7ab

Description:

log (a+b3)=12(log a+log b)text{log } Big(frac{a + b}{3}Big) = frac{1}{2} (text{log } a + text{log } b)

log (a+b3)= log (ab)12 or a+b3=(ab)12therefore text{log } Big(frac{a + b}{3}Big) = text{ log } (ab)^frac{1}{2} text{ or } frac{a + b}{3} = (ab)^frac{1}{2}

 or (a+b)2=9aba2+b2=7abtext{ or } (a +b )^2 = 9ab Rightarrow a^2 + b^2 = 7ab

Q2 :

The expression  log 115+log143log 2215text{ log } frac{11}{5} + text{log} frac{14}{3} - text{log } frac{22}{15 } is equal to

A
  

log 2

B
  

log 3

C
  

log 5

D
  

log 7

View Answer
Correct Answer: D

log 7

Description:

 log 11 log 5+ log 2+ log 7 log 3  log 2 log 11+ log 5+ log 3begin{aligned} & text{ log } 11 - text{ log } 5 + text{ log } 2 + text{ log } 7 - text{ log } 3 \ &- text{ log } 2 - text{ log } 11 + text{ log } 5 + text{ log }3 end{aligned}

 log 7therefore text{ log } 7

Q3 :

If  logba× logyx= log catext{ log}_b a times text{ log}_y x = text{ log }_c a, then the value of xx and yy are respectively

A
  

b and cb text{ and } c

B
  

c and bc text{ and } b

C
  

c and ac text{ and } a

D
  

b and ab text{ and } a

View Answer
Correct Answer: A

b and cb text{ and } c

Description:

 logba× logyx= log catext{ log}_b a times text{ log}_y x = text{ log }_c a

 logba× logcb= log catext{ log}_b a times text{ log}_c b = text{ log }_c a

x=b,y=ctherefore x = b, y = c

Q4 :

If log107=alog_{10} 7 = a, then log10(170)log_{10}Big(frac{1}{70}Big) is equal to 

A
  

a10frac{a}{10}

B
  

110afrac{1}{10a}

C
  

(1+a)1(1 + a)^{-1}

D
  

(1+a)-(1 + a)

View Answer
Correct Answer: D

(1+a)-(1 + a)

Description:

log170=log1log70 =log70 =log(7×10) =(log7+log10) =log7log10 =a1=(1+a) [log7=a]begin{aligned} &log frac{1}{70} = log 1 - log 70 &quadquad = - log 70 &quadquad = - log (7 times 10) &quadquad = - (log 7 + log 10) &quadquad = - log 7 - log 10 &quadquad = - a - 1 = - (1 + a) &quadquad [because log 7 = a] end{aligned}

Q5 :

If antilog (0.0385) = 1092 and logx=3ˉ.0385log x = bar 3.0385, then xx is equal to

A
  

.1092

B
  

.01092

C
  

.001092

D
  

.0001092

View Answer
Correct Answer: C

.001092

Description:

logx=3ˉ.0385=3.0385 =6+3.0385 =6log10+3.0385 =log106+log(1092) =log(1092×106) =log(0.001092) x=0.001092begin{aligned} log x &= bar 3.0385 = - 3.0385 quadquad; &= - 6 + 3.0385 quadquad; &= - 6 log 10 + 3.0385 quadquad; &=log 10^{-6} + log (1092) quadquad; &=log (1092 times 10^{-6}) quadquad; &= log (0.001092) Rightarrow x &= 0.001092 end{aligned}

Q6 :

The value of,13log101252log104+log1032frac{1}{3} log_{10} 125 - 2 log_{10} 4 + log_{10} 32 is

A
  

0

B
  

1

C
  

2

D
  

3

View Answer
Correct Answer: B

1

Description:

13log101252log104+log1032 =log10(125)1/3log1042+log1032 [logmn=nlogm] =log105log1016+log1032 =log105×3216 =log1010 =1 [logm×n=logm+logn] [logmn=logmlogn]begin{aligned} &frac{1}{3} log_{10} 125 - 2 log_{10} 4 + log_{10} 32 \ &= log_{10} (125)^{1/3} - log_{10} 4 ^2 + log_{10}^{32} \ &Big[because log m^n = n log mBig] \ &=log_{10} 5 - log_{10} 16 + log_{10} 32 \ &=log_{10} frac{5 times 32}{16} \ &=log_{10} 10 \ &= 1 \ &Big[ because log m times n = log m + log nBig] \ &Big[log frac{m}{n} = log m - log n Big] &end{aligned}

Q7 :

For 0 < a <1, the numbers 1afrac{1}{a}, a,a2loga, a^2 log a when arranged in ascending order of their values, are:

A
  

loga,a2,a,1alog a, a^2, a, frac{1}{a}

B
  

a,1a,loga,a2a, frac{1}{a}, log a, a^2

C
  

a,a2,loga,1aa, a^2, log a, frac{1}{a}

D
  

loga,1a,a,a2log a, frac{1}{a}, a, a^2

View Answer
Correct Answer: A

loga,a2,a,1alog a, a^2, a, frac{1}{a}

Description:

Given , 0 < a < 1

Let a=12=0.5a = frac{1}{2} = 0.5

a2=14=0.25a^2 = frac{1}{4} = 0.25

1a=2frac{1}{a} = 2

loga=log12=log1log2=00.30= negativelog a = log frac{1}{2} = log_1 - log_2 = 0 - 0.30 = text{ negative}

therefore In ascending order of their values are

loga,a2,a,1alog a, a^2, a, frac{1}{a}

Q8 :

The value of log10125log_{10} 125, (given log102=0.30log_{10} 2 = 0.30), is

A
  

2.05

B
  

2.10

C
  

2.15

D
  

2.21

View Answer
Correct Answer: B

2.10

Description:

log10125=log10(5)3 =3log105[logmn=nlogm] =3log10(102) =3[log1010log102] =3[10.30] =3×0.70 =2.10begin{aligned} log_{10}125 &= log_{10}(5)^3 &= 3 log_{10}5 [because log m^n = n log m] &= 3 log_{10} Big(frac{10}{2}Big) &= 3[log_{10}10 - log_{10}2] &= 3 [1 - 0.30] &= 3 times 0.70 &= 2.10 end{aligned}