Home > Quantitative Aptitude Questions > Trigonometry Questions and Answers

Trigonometry Questions and Answers

Q1 :

The value of θ(0θπ2)theta left(0 leq theta leq frac{pi}{2} right) satisfying the equation

sin2θ2 cosθ+14=0 , istext{sin}^2 theta - 2 text{ cos} theta + frac{1}{4} = 0 text{ , is}

A
  

π2frac{pi}{2}

B
  

π3frac{pi}{3}

C
  

π4frac{pi}{4}

D
  

π6frac{pi}{6}

View Answer
Correct Answer: B

π3frac{pi}{3}

Description:

The equation can be written as

1cos2θ2 cos θ+14=0 is1 - text{cos}^2 theta - 2 text{ cos } theta + frac{1}{4} = 0 text{ is}

 cos 2θ2 cos θ54=0Rightarrow text{ cos }^2 theta - 2 text{ cos } theta - frac{5}{4} = 0

 cos θ=2±4+52Rightarrow text{ cos } theta = frac{-2 pm sqrt{4 + 5}}{2}

[xb±D2a]left[therefore x - frac{-b pm sqrt {D}}{2a} right]

=2±32=12θ=π3= frac{-2 pm 3}{2} = frac{1}{2} Rightarrow theta = frac{pi}{3}

Q2 :

The expression for sin θtheta in terms of sec

A
  

1 sec2θ1frac{1}{sqrt{text{ sec}^2 theta - 1 }}

B
  

 sec2θ sec2θ1frac{text{ sec}^2 theta}{sqrt{text{ sec}^2 theta - 1 }}

C
  

 sec2θ1 secθfrac{sqrt{text{ sec}^2 theta - 1 }}{text{ sec} theta}

D
  

 sec2θ1sqrt{text{ sec}^2 theta - 1 }

View Answer
Correct Answer: C

 sec2θ1 secθfrac{sqrt{text{ sec}^2 theta - 1 }}{text{ sec} theta}

Description:

sinθ=1cos2θtext{sin} theta = sqrt{ 1 - text{cos}^2 theta }

=11sec2θ= sqrt{ 1 - frac{1}{text{sec}^2 theta} }

=sec2θ1secθ= sqrt{frac{ text{sec}^2 theta - 1}{text{sec}theta}}

Q3 :

The value of sin 45+ sin 105+ cos 105 cos 45sin 75+ cos 75frac{text{sin } 45^circ + text{ sin } 105^circ + text{ cos } 105^circ text{ cos } 45^circ} { text{sin } 75^circ + text{ cos } 75^circ }is equal to

A
  

16frac{1}{sqrt6}

B
  

13frac{1}{sqrt3}

C
  

123frac{1}{2sqrt3}

D
  

132frac{1}{3sqrt2}

View Answer
Correct Answer: A

16frac{1}{sqrt6}

Description:

=cos (10545)2 cos 30=cos 602 cos 30=frac{text{cos } (105 - 45)}{sqrt2 text{ cos } 30^circ } = frac{text {cos } 60}{sqrt2 text{ cos } 30^circ}

=122×32=16=dfrac{frac{1}{2}}{sqrt2 times frac{sqrt3}{2}} = dfrac{1}{sqrt6}

Q4 :

If  tanx+cotx=3,then sec2x+cosec2xtext{ tan}x + text{cot}x = 3, text{then sec}^2x + text{cosec}^2x is equal to 

A
  

3

B
  

9

C
  

12

D
  

15

View Answer
Correct Answer: B

9

Description:

=(tan x+cot x)2=(3)2=9= (text{tan }x + text{cot }x)^2 = (3)^2 = 9

=tan2x+cot2x+2 tanx.cotx=9= text{tan}^2x + text{cot}^2x + 2 text{ tan}x . text{cot}x = 9

=sec2x+cosec2x=9= text{sec}^2x + text{cosec}^2x = 9

Q5 :

Two boys are on opposite sides of a tower of 100 meter height. If they measure the elevation of the top of the tower as 3030^circ and 4545^circ respectively, the distance between the tower is 200 metres, then the distance between the boys is

A
  

1003 metres100sqrt3 text{ metres}

B
  

100(3+1) metres100(sqrt3 +1) text{ metres}

C
  

100(31) metres100(sqrt3 -1) text{ metres}

D
  

10031 metres100sqrt3 -1 text{ metres}

View Answer
Correct Answer: C

100(31) metres100(sqrt3 -1) text{ metres}

Description:

AQ=DA=100 m AQ = DA = 100 text{ m }

PB=1003 m PB = 100sqrt3 text{ m }

 Distance between PQ=AQ+PBABtext{ Distance between } PQ = AQ + PB -AB

=100+1003200= 100 + 100sqrt3 - 200

=1003100= 100sqrt3 - 100

=100(31) metre = 100(sqrt3 - 1) text{ metre }


Q6 :

For λ0lambda ne 0, the angle between the lines given by the equation λy2+(1λ2)xyλx2=0lambda y^2 + (1 - lambda^2) ; xy - lambda x^2 = 0 is

A
  

30°30degree

B
  

45°45degree

C
  

60°60degree

D
  

90°90degree

View Answer
Correct Answer: D

90°90degree

Description:

The equation of the pair of straight lines given by 

ax2+2hxy+by2=0ax^2 + 2hxy + by^2 = 0

the angle θtheta between them is given by

tan θ=2h2aba+btext{tan } theta = dfrac{2sqrt{h^2 - ab}}{a + b}

According to question, a=λ,b=λa = -lambda, b = lambda

a+b=0Rightarrow a + b = 0

θ=π2therefore theta = dfrac{pi}{2}

Q7 :

If cos α+sec α=2text{cos } alpha + text{sec } alpha = 2, then the value of cos8α+sec8αtext{cos}^8 alpha + text{sec}^8 alpha is equal to

A
  

22

B
  

222^2

C
  

242^4

D
  

282^8

View Answer
Correct Answer: A

22

Description:

Expression, cos x+sec x=2text{cos } x + text{sec } x = 2

(cos α+sec α)2=4Rightarrow (text{cos } alpha + text{sec } alpha)^2 = 4

cos2α+sec2α+2=4Rightarrow text{cos}^2 alpha + text{sec}^2 alpha + 2 = 4

cos2α+sec2α=2Rightarrow text{cos}^2 alpha + text{sec}^2 alpha = 2

Squaring again, we get

cos4α+sec4α=2text{cos}^4 alpha + text{sec}^4 alpha = 2

Squaring again, we get

cos8α+sec8α=2text{cos}^8 alpha + text{sec}^8 alpha = 2

Q8 :

The numerical value of the expression

sin9°sin48°cos81°cos42°dfrac{text{sin}9degree}{text{sin}48degree} - dfrac{text{cos}81degree}{text{cos}42degree}sin9°sin48°cos81°cos42°frac{text{sin}9degree}{text{sin}48degree} - frac{text{cos}81degree}{text{cos}42degree}  is

A
  

1

B
  

1/2

C
  

0

D
  

-1

View Answer
Correct Answer: C

0

Description:

sin(90θ)=cosθsin(90 - theta) = costheta

sin9°=sin(90°81°)=cos81°therefore sin9degree = sin (90degree - 81degree) = cos81degree

sin48°=sin(90°42°)=cos42°sin48degree = sin (90degree - 42degree) = cos42degree

therefore Given expression

=cos81°cos42°cos81°cos42°=0= frac{cos81degree}{cos42degree} - frac{cos81degree}{cos42degree} = 0

Q9 :

An angle is divided into two parts αalpha and βbeta in such αalpha way that  tanα=12tan alpha = frac{1}{2} and tanβ=2tan beta = 2. The measure of the angle is

A
  

2π3frac{2pi}{3}

B
  

π2frac{pi}{2}

C
  

πpi

D
  

3π4frac{3pi}{4}

View Answer
Correct Answer: B

π2frac{pi}{2}

Description:

tan(α+β)=tanα+tanβ1tanαtanβtan (alpha + beta) = frac{tan alpha + tan beta}{1 - tan alpha tan beta}

=12+2112×2== dfrac{frac{1}{2} + 2}{1 - frac{1}{2} times 2} = infty

Hence α+β=π2alpha + beta = frac{pi}{2}

Q10 :

If α+β=90°alpha + beta = 90degree, then cosec2α+cosec2βtext{cosec}^2alpha + text{cosec}^2beta is equal to

A
  

cosec2α+cosec2βtext{cosec}^2alpha + text{cosec}^2beta

B
  

sin2α+sin2βtext{sin}^2alpha + text{sin}^2beta

C
  

tan2α+tan2βtext{tan}^2alpha + text{tan}^2beta

D
  

sec2α+sec2βtext{sec}^2alpha + text{sec}^2beta

View Answer
Correct Answer: A

cosec2α+cosec2βtext{cosec}^2alpha + text{cosec}^2beta

Description:

cosec2α+cos2β=1sin2α+1sin2βtext{cosec}^2 alpha + cos^2 beta = dfrac{1}{sin^2 alpha} + dfrac{1}{sin^2 beta}

(α+β=90°)(because alpha + beta = 90degree )

=1sin2α+1cos2α=1sin2αcos2α=dfrac{1}{sin^2 alpha} + dfrac{1}{cos^2 alpha} = dfrac{1}{sin^2 alpha cos^2 alpha}

=1sin2αsin2β[cos2α=sin2β]=dfrac{1}{sin^2 alpha sin^2beta} quadquad [because cos^2 alpha = sin^2 beta]

=cosec2α cosec2β=text{cosec}^2 alpha text{ cosec}^2 beta

Page: