Home > Quantitative Aptitude Questions > Trigonometry Questions and Answers

Trigonometry Questions and Answers

Q11 :

If sin2θ=cos3θsin 2theta =cos 3theta and θtheta is an acute angle, then θtheta is equal to

A
  

18°18degree

B
  

27°27degree

C
  

36°36degree

D
  

45°45degree

View Answer
Correct Answer: A

18°18degree

Description:

We know that sinθ=cos(90°θ)sintheta = cos (90degree - theta)

sin2θ=cos3θtherefore sin 2theta = cos 3theta

cos(90°2θ)=cos3θRightarrow cos (90degree - 2theta) = cos 3theta

2θ=90°3θRightarrow 2theta = 90degree - 3theta

θ=18°Rightarrow theta = 18degree

Q12 :

If sec 11θ= cosec 7θ(0°<θ<20°)11theta = text{ cosec } 7theta (0degree lt theta lt 20degree), then the value of θtheta is

A
  

5°5degree

B
  

10°10degree

C
  

15°15degree

D
  

18°18degree

View Answer
Correct Answer: A

5°5degree

Description:

Given 1cos11θ=1sin7θ=1cos(907θ)dfrac{1}{cos 11theta} = dfrac{1}{sin 7theta} = dfrac{1}{cos (90- 7theta) }

11θ=907θRightarrow 11theta = 90 - 7theta

θ=5°Rightarrow theta = 5degree

Q13 :

The maximum value of sinθcosθsin theta cdot cos theta is

A
  

1

B
  

12frac{1}{2}

C
  

12frac{1}{sqrt{2}}

D
  

32frac{sqrt{3}}{2}

View Answer
Correct Answer: B

12frac{1}{2}

Description:

By definition, for Maxima or Minima,

ddθ(sinθcosθ)=0frac{d}{dtheta} (sin theta cos theta ) = 0

cos2θsin2θ=0Rightarrow cos^2 theta - sin^2 theta = 0

cosθ=sinθθ=45Rightarrow cos theta = sin theta Rightarrow theta = 45

max (sinθcosθ)therefore text{max } (sin theta cos theta )

=sin45cos45=12=sin 45^circ cos 45^circ = frac{1}{2}

Q14 :

The value of sin3(15°)cos3(15°)sin^3 (15degree) - cos^3 (15degree) is

A
  

34(sin15°cos15°)frac{3}{4}(sin 15degree - cos 15degree )

B
  

582frac{5}{8sqrt{2}}

C
  

582-frac{5}{8sqrt{2}}

D
  

542-frac{5}{4sqrt{2}}

View Answer
Correct Answer: D

542-frac{5}{4sqrt{2}}

Description:

sin315cos315=(sin15cos15)(1+sin15cos15)sin^3 15 - cos^3 15 = (sin 15 - cos 15)(1 + sin 15 cos 15)

=(sin15cos15)(1+12sin30)= (sin 15 - cos 15) Big(1 + frac{1}{2}sin 30Big)

=54(sin15cos15)=frac{5}{4}(sin 15 - cos 15)

=54[±1sin30]=frac{5}{4}Big[pmsqrt{1 - sin 30}Big]

=±542=542(Neglecting +ve sign)=pmfrac{5}{4sqrt{2}} = - frac{5}{4sqrt{2}} ; text{(Neglecting +ve sign)}

Q15 :

The value of 3tan20°tan320°13tan220frac{3 tan 20degree - tan^3 20 degree}{1 - 3tan^2 20} is equal to

A
  

13frac{1}{sqrt{3}}

B
  

1

C
  

3sqrt{3}

D
  

23frac{2}{sqrt{3}}

View Answer
Correct Answer: C

3sqrt{3}

Description:

We know that tan3θ=3tanθtan3θ13tan2θtan 3theta =frac{3 tan theta - tan^3 theta}{1 - 3 tan^2theta}

Here, θ=20°theta = 20degree

3tan20°tan320°13tan220°therefore frac{3 tan 20degree - tan^3 20degree }{1 - 3 tan^2 20degree}

=tan3θ=tan60°=3=tan 3theta = tan 60degree = sqrt{3}

Q16 :

If 2cos2θ+11sinθ7=02 cos^2 theta + 11 sin theta - 7 = 0, then  the value of sinθsin theta is equal to

A
  

12frac{-1}{2}

B
  

12frac{1}{2}

C
  

5

D
  

12frac{1}{sqrt{2}}

View Answer
Correct Answer: B

12frac{1}{2}

Description:

The given equation can be written as

22sin2θ+11sinθ 7=02 - 2 sin^2 theta + 11 sin theta - 7 = 0

2sin2θ11sinθ+5=0Rightarrow 2 sin^2 theta - 11 sin theta + 5 = 0

sinθ=11±121404Rightarrow sin theta = frac{11 pm sqrt{121-40}}{4}

=11±94=5 or 12=frac{11 pm 9}{4} = 5 text{ or } frac{1}{2}

Since sinθsin theta can not be greater than 1,

sinθ=12therefore sin theta = frac{1}{2}

Q17 :

The angle between the hour and minute hands of a clock at 02 : 15 hour is

A
  

15°15degree

B
  

712°7frac{1}{2}degree

C
  

2212°22frac{1}{2}degree

D
  

30°30degree

View Answer
Correct Answer: C

2212°22frac{1}{2}degree

Description:

The angle between two consecutive hour marks  =36012=30°=frac{360}{12} = 30degree
By question, minute hand is at 3 and hour hand slightly ahead of 2.

therefore In 15 minutes hour hand moves by an angle of 3060×15=712°frac{30}{60} times 15 = 7frac{1}{2}degree

therefore Required angle =30°712°=2212°= 30degree - 7frac{1}{2}degree =22frac{1}{2}degree

Q18 :

An aeroplane at a height of 3000 m, passes vertically above another aeroplane at an instant. If the angles of elevation of the two aeroplanes from some point on the ground are 60°60degree and 45°45degree, respectively, then the vertical distance between the two planes is:

A
  

1000(31) m 1000 Big(sqrt{3 - 1}Big) text{ m }

B
  

10003 m 1000 sqrt{3} text{ m }

C
  

1000(33) m 1000 Big(3 - sqrt{3}Big) text{ m }

D
  

10003 m 1000 sqrt{3} text{ m }

View Answer
Correct Answer: C

1000(33) m 1000 Big(3 - sqrt{3}Big) text{ m }

Description:

LetAD=h BD=(3000h) Now, tan45°=BDCB  BD=CB=(3000h)mbegin{aligned} text{Let} quad text{AD} &= h therefore quad text{BD} &= (3000 - h) text{Now, } tan 45degree &= frac{text{BD}}{text{CB}} therefore quad text{ BD} &= text{CB} = (3000 - h) text{m} end{aligned}

Again

tan 60°=ABBCquad text{tan } 60degree = frac{text{AB}}{text{BC}}


V3=30003000hRightarrow quad text{V}_3 = frac{3000}{3000 - h}

h=3000130003=3000330003Rightarrow quad h =frac{3000}{1} - frac{3000}{sqrt{3}} =frac{3000sqrt{3} - 3000}{sqrt{3}}

=1000(33)= 1000 (3 - sqrt3)

Q19 :

Two observers are stationed due north of a tower at a distance of 20 m from each other. If the elevations of the tower observed by them are 30°30degree and 30°30degree, respectively, then the height of the tower is:

A
  

10 m

B
  

16.32 m

C
  

10(3+1)10Big(sqrt{3 + 1}Big) m

D
  

30 m

View Answer
Correct Answer: C

10(3+1)10Big(sqrt{3 + 1}Big) m

Description:

Let CD =hm thus tan45°=CDBC1=hBC BC =CD=h Now, tan30°=CDACbegin{aligned} text{Let CD } &= hm text{ thus} tan 45degree &= frac{text{CD}}{text{BC}} Rightarrow 1 = frac{h}{text{BC}} Rightarrow quad text{BC } &= text{CD} = h text{Now, } tan 30degree &= frac{text{CD}}{text{AC}} end{aligned}


13=hh+20 h+20=3h 3hh=20 h(31)=20 h=20×(3+1)31×(3+1) =20(3+1)2 =10(3+1)begin{aligned} Rightarrow quad frac{1}{sqrt3} &= frac{h}{h + 20} Rightarrow quad h + 20 &= sqrt3 h therefore quad sqrt3 h - h &= 20 therefore quad h(sqrt3 - 1) &= 20 therefore quad h &= frac{20 times (sqrt3 + 1)}{sqrt3 - 1 times(sqrt3 + 1)} &= frac{20(sqrt3 + 1)}{2} &= 10(sqrt3 + 1) end{aligned}

Q20 :

A pole is standing erect on the ground which is horizontal. The tip of the pole is tied tight with a rope of length 12sqrt12 to a point on the ground. If the rope is making 3030^circ angle with the horizontal, then the height of the pole is:

A
  

232sqrt3

B
  

323sqrt2

C
  

3

D
  

3sqrt3

View Answer
Correct Answer: D

3sqrt3

Description:

Let AB=hquad text{AB} = h
then sin30°=AB12sin 30degree = frac{text{AB}}{sqrt12}


12=h12Rightarrow quad frac{1}{2} = frac{h}{sqrt12}

h=122=232=3therefore quad h = frac{sqrt12}{2} = frac{2sqrt3}{2} = sqrt3

Page: