Home > Quantitative Aptitude Questions > Trigonometry Questions and Answers

Trigonometry Questions and Answers

Q21 :

If tanθ+secθ=2,0θπ2tan theta + sec theta = 2, 0 le theta le frac{pi}{2}; then the value of tanθtantheta is equal to :

A
  

34frac{3}{4}

B
  

54frac{5}{4}

C
  

32frac{3}{2}

D
  

52frac{5}{2}

View Answer
Correct Answer: A

34frac{3}{4}

Description:

We know that

sec2θtan2θ=1sec^2theta - tan^2 theta = 1
and secθ+tanθ=2sec theta + tan theta = 2(given)    ...(i)

then, sec2θtan2θsecθ+tanθ=12frac{sec^2 theta - tan^2 theta}{sec theta + tan theta} = frac{1}{2}

secθtanθ=12therefore sec theta - tan theta = frac{1}{2} ...(ii)

Subtracting (ii) from (i)

2tanθ=32tanθ=342 tan theta = frac{3}{2} Rightarrow tan theta = frac{3}{4}

Q22 :

The value of (cos225°+cos265°)(cos^2 25degree + cos^2 65degree) is:

A
  

0

B
  

sin240°sin^2 40degree

C
  

cos240°cos^2 40degree

D
  

1

View Answer
Correct Answer: D

1

Description:

cos225°=cos2(90°25°)cos^2 25degree = cos^2 (90degree - 25degree)

=sin265°= sin^2 65degree

cos225°+cos265°=sin265°+cos265°therefore cos^2 25degree + cos^2 65degree = sin^2 65degree + cos^2 65degree

=1(sin2θ+cos2θ=1)= 1 (because sin^2 theta + cos^2 theta = 1)

Q23 :

If cos2θ3cosθ+2sin2θ=1,θ,0frac{cos^2theta - 3costheta + 2}{sin^2theta} = 1, theta, 0 then θtheta is :

A
  

30°30degree

B
  

60°60degree

C
  

75°75degree

D
  

90°90degree

View Answer
Correct Answer: B

60°60degree

Description:

Given, cos2θ3cosθ+2sin2θ=1dfrac{cos^2theta - 3costheta + 2}{sin^2theta} = 1

cos2θ3cosθ+2=sin2θ=1cos2θRightarrow cos^2theta - 3costheta + 2 = sin^2theta = 1 - cos^2 theta

2cos2θ3cosθ+1=0Rightarrow 2 cos^2 theta - 3 cos theta + 1 = 0

2cos2θ2cosθcosθ+1=0Rightarrow 2 cos^2 theta - 2 cos theta - cos theta + 1 = 0

(2cosθ1)(cosθ1)=0Rightarrow (2 cos theta - 1)(cos theta - 1) = 0 either cosθ=1 or (2cosθ1)=0cos theta = 1 quad text{ or } (2 cos theta - 1) = 0 but cosθ1cos theta ne 1

cosθ=1therefore cos theta = 1

cosθ=12=cos60°therefore cos theta = frac{1}{2} = cos 60degree

θ=60°therefore theta = 60^degree

Q24 :

If a and b are positive, then the relation sinθ=(a+2b)/2sin theta = (text{a} + 2text{b})/2text{b } is

A
  

not possible

B
  

possible only if a = b

C
  

possible if a < b

D
  

possible if b > a

View Answer
Correct Answer: A

not possible

Description:

sinθ=a+2b2b=a2b+1>1sin theta = frac{text{a} + 2text{b}}{2text{b}} = frac{text{a}}{2text{b}} + 1 gt 1

[ a  and  b  are the a2b in the][because text{ a } text{ and } text{ b } text{ are the } therefore frac{text{a}}{2text{b}} text{ in the} ]

But sinθsin theta lies between -1 and 1

therefore Not possible

Q25 :

If the angle of elevation of the top of a tower at a distance 100 metres from its foot is 45°45degree, then the height, in metres, of the tower is equal to

A
  

100

B
  

75

C
  

4500

D
  

50

View Answer
Correct Answer: A

100

Description:

h100=tan45°frac{h}{100} = tan 45degree

h=100 m Rightarrow h = 100 text{ m }


Q26 :

The expression cos3θsin3θcosθsinθfrac{cos^3 theta - sin^3 theta}{cos theta - sin theta} simplifies to

A
  

1+sinθ21 + frac{sin theta}{2}

B
  

1+sin2θ21 + frac{sin 2 theta}{2}

C
  

1+sinθ2frac{1 + sin theta}{2}

D
  

1+sin2θ2frac{1 + sin 2 theta}{2}

View Answer
Correct Answer: B

1+sin2θ21 + frac{sin 2 theta}{2}

Description:

cos3θsin3θcosθsinθfrac{cos^3 theta - sin^3 theta}{cos theta - sin theta}

=(cosθsinθ)(cos2θ+sin2θsinθcosθ)cosθsinθ= frac{(cos theta - sin theta) (cos^2 theta + sin^2 theta sin theta cos theta) }{cos theta - sin theta}

=1+2sinθcosθ2(sin2θ+cos2θ=1)= 1 + frac{2 sin theta cos theta}{2} (because sin^2 theta + cos^2 theta = 1)

=1+sin2θ2= 1 + frac{sin 2 theta}{2}

Q27 :

If tan A + cot A = 2, then the value of sec A, is equal to

A
  

11

B
  

2sqrt2

C
  

12frac{1}{2}

D
  

32frac{sqrt3}{2}

View Answer
Correct Answer: B

2sqrt2

Description:

tan A + cot A = 2

sinAcosA+cosAsinA=2sin2A+cos2Atherefore frac{sin A}{cos A} + frac{cos A}{sin A} =2 Rightarrow sin^2 A + cos^2 A

=2sinAcosA1=sin2Asin2A=2 sin A cos A Rightarrow 1 = sin 2A Rightarrow sin 2A

=sin90°2A=90A=cos45°=sin 90degree Rightarrow 2A = 90 Rightarrow A = cos 45degree

=secA=sec45=2= sec A = sec 45 = sqrt2

Page: