Trigonometry Questions and Answers

Q1 :

The value of θ(0θπ2)theta left(0 leq theta leq frac{pi}{2} right) satisfying the equation

sin2θ2 cosθ+14=0 , istext{sin}^2 theta - 2 text{ cos} theta + frac{1}{4} = 0 text{ , is}

A
  

π2frac{pi}{2}

B
  

π3frac{pi}{3}

C
  

π4frac{pi}{4}

D
  

π6frac{pi}{6}

View Answer
Correct Answer: B

π3frac{pi}{3}

Description:

The equation can be written as

1cos2θ2 cos θ+14=0 is1 - text{cos}^2 theta - 2 text{ cos } theta + frac{1}{4} = 0 text{ is}

 cos 2θ2 cos θ54=0Rightarrow text{ cos }^2 theta - 2 text{ cos } theta - frac{5}{4} = 0

 cos θ=2±4+52Rightarrow text{ cos } theta = frac{-2 pm sqrt{4 + 5}}{2}

[xb±D2a]left[therefore x - frac{-b pm sqrt {D}}{2a} right]

=2±32=12θ=π3= frac{-2 pm 3}{2} = frac{1}{2} Rightarrow theta = frac{pi}{3}

Q2 :

The expression for sin θtheta in terms of sec

A
  

1 sec2θ1frac{1}{sqrt{text{ sec}^2 theta - 1 }}

B
  

 sec2θ sec2θ1frac{text{ sec}^2 theta}{sqrt{text{ sec}^2 theta - 1 }}

C
  

 sec2θ1 secθfrac{sqrt{text{ sec}^2 theta - 1 }}{text{ sec} theta}

D
  

 sec2θ1sqrt{text{ sec}^2 theta - 1 }

View Answer
Correct Answer: C

 sec2θ1 secθfrac{sqrt{text{ sec}^2 theta - 1 }}{text{ sec} theta}

Description:

sinθ=1cos2θtext{sin} theta = sqrt{ 1 - text{cos}^2 theta }

=11sec2θ= sqrt{ 1 - frac{1}{text{sec}^2 theta} }

=sec2θ1secθ= sqrt{frac{ text{sec}^2 theta - 1}{text{sec}theta}}

Q3 :

The value of sin 45+ sin 105+ cos 105 cos 45sin 75+ cos 75frac{text{sin } 45^circ + text{ sin } 105^circ + text{ cos } 105^circ text{ cos } 45^circ} { text{sin } 75^circ + text{ cos } 75^circ }is equal to

A
  

16frac{1}{sqrt6}

B
  

13frac{1}{sqrt3}

C
  

123frac{1}{2sqrt3}

D
  

132frac{1}{3sqrt2}

View Answer
Correct Answer: A

16frac{1}{sqrt6}

Description:

=cos (10545)2 cos 30=cos 602 cos 30=frac{text{cos } (105 - 45)}{sqrt2 text{ cos } 30^circ } = frac{text {cos } 60}{sqrt2 text{ cos } 30^circ}

=122×32=16=dfrac{frac{1}{2}}{sqrt2 times frac{sqrt3}{2}} = dfrac{1}{sqrt6}

Q4 :

If  tanx+cotx=3,then sec2x+cosec2xtext{ tan}x + text{cot}x = 3, text{then sec}^2x + text{cosec}^2x is equal to 

A
  

3

B
  

9

C
  

12

D
  

15

View Answer
Correct Answer: B

9

Description:

=(tan x+cot x)2=(3)2=9= (text{tan }x + text{cot }x)^2 = (3)^2 = 9

=tan2x+cot2x+2 tanx.cotx=9= text{tan}^2x + text{cot}^2x + 2 text{ tan}x . text{cot}x = 9

=sec2x+cosec2x=9= text{sec}^2x + text{cosec}^2x = 9

Q5 :

Two boys are on opposite sides of a tower of 100 meter height. If they measure the elevation of the top of the tower as 3030^circ and 4545^circ respectively, the distance between the tower is 200 metres, then the distance between the boys is

A
  

1003 metres100sqrt3 text{ metres}

B
  

100(3+1) metres100(sqrt3 +1) text{ metres}

C
  

100(31) metres100(sqrt3 -1) text{ metres}

D
  

10031 metres100sqrt3 -1 text{ metres}

View Answer
Correct Answer: C

100(31) metres100(sqrt3 -1) text{ metres}

Description:

AQ=DA=100 m AQ = DA = 100 text{ m }

PB=1003 m PB = 100sqrt3 text{ m }

 Distance between PQ=AQ+PBABtext{ Distance between } PQ = AQ + PB -AB

=100+1003200= 100 + 100sqrt3 - 200

=1003100= 100sqrt3 - 100

=100(31) metre = 100(sqrt3 - 1) text{ metre }


Q6 :

For λ0lambda ne 0, the angle between the lines given by the equation λy2+(1λ2)xyλx2=0lambda y^2 + (1 - lambda^2) ; xy - lambda x^2 = 0 is

A
  

30°30degree

B
  

45°45degree

C
  

60°60degree

D
  

90°90degree

View Answer
Correct Answer: D

90°90degree

Description:

The equation of the pair of straight lines given by 

ax2+2hxy+by2=0ax^2 + 2hxy + by^2 = 0

the angle θtheta between them is given by

tan θ=2h2aba+btext{tan } theta = dfrac{2sqrt{h^2 - ab}}{a + b}

According to question, a=λ,b=λa = -lambda, b = lambda

a+b=0Rightarrow a + b = 0

θ=π2therefore theta = dfrac{pi}{2}

Q7 :

If cos α+sec α=2text{cos } alpha + text{sec } alpha = 2, then the value of cos8α+sec8αtext{cos}^8 alpha + text{sec}^8 alpha is equal to

A
  

22

B
  

222^2

C
  

242^4

D
  

282^8

View Answer
Correct Answer: A

22

Description:

Expression, cos x+sec x=2text{cos } x + text{sec } x = 2

(cos α+sec α)2=4Rightarrow (text{cos } alpha + text{sec } alpha)^2 = 4

cos2α+sec2α+2=4Rightarrow text{cos}^2 alpha + text{sec}^2 alpha + 2 = 4

cos2α+sec2α=2Rightarrow text{cos}^2 alpha + text{sec}^2 alpha = 2

Squaring again, we get

cos4α+sec4α=2text{cos}^4 alpha + text{sec}^4 alpha = 2

Squaring again, we get

cos8α+sec8α=2text{cos}^8 alpha + text{sec}^8 alpha = 2

Q8 :

The numerical value of the expression

sin9°sin48°cos81°cos42°dfrac{text{sin}9degree}{text{sin}48degree} - dfrac{text{cos}81degree}{text{cos}42degree}sin9°sin48°cos81°cos42°frac{text{sin}9degree}{text{sin}48degree} - frac{text{cos}81degree}{text{cos}42degree}  is

A
  

1

B
  

1/2

C
  

0

D
  

-1

View Answer
Correct Answer: C

0

Description:

sin(90θ)=cosθsin(90 - theta) = costheta

sin9°=sin(90°81°)=cos81°therefore sin9degree = sin (90degree - 81degree) = cos81degree

sin48°=sin(90°42°)=cos42°sin48degree = sin (90degree - 42degree) = cos42degree

therefore Given expression

=cos81°cos42°cos81°cos42°=0= frac{cos81degree}{cos42degree} - frac{cos81degree}{cos42degree} = 0

Q9 :

An angle is divided into two parts αalpha and βbeta in such αalpha way that  tanα=12tan alpha = frac{1}{2} and tanβ=2tan beta = 2. The measure of the angle is

A
  

2π3frac{2pi}{3}

B
  

π2frac{pi}{2}

C
  

πpi

D
  

3π4frac{3pi}{4}

View Answer
Correct Answer: B

π2frac{pi}{2}

Description:

tan(α+β)=tanα+tanβ1tanαtanβtan (alpha + beta) = frac{tan alpha + tan beta}{1 - tan alpha tan beta}

=12+2112×2== dfrac{frac{1}{2} + 2}{1 - frac{1}{2} times 2} = infty

Hence α+β=π2alpha + beta = frac{pi}{2}

Q10 :

If α+β=90°alpha + beta = 90degree, then cosec2α+cosec2βtext{cosec}^2alpha + text{cosec}^2beta is equal to

A
  

cosec2α+cosec2βtext{cosec}^2alpha + text{cosec}^2beta

B
  

sin2α+sin2βtext{sin}^2alpha + text{sin}^2beta

C
  

tan2α+tan2βtext{tan}^2alpha + text{tan}^2beta

D
  

sec2α+sec2βtext{sec}^2alpha + text{sec}^2beta

View Answer
Correct Answer: A

cosec2α+cosec2βtext{cosec}^2alpha + text{cosec}^2beta

Description:

cosec2α+cos2β=1sin2α+1sin2βtext{cosec}^2 alpha + cos^2 beta = dfrac{1}{sin^2 alpha} + dfrac{1}{sin^2 beta}

(α+β=90°)(because alpha + beta = 90degree )

=1sin2α+1cos2α=1sin2αcos2α=dfrac{1}{sin^2 alpha} + dfrac{1}{cos^2 alpha} = dfrac{1}{sin^2 alpha cos^2 alpha}

=1sin2αsin2β[cos2α=sin2β]=dfrac{1}{sin^2 alpha sin^2beta} quadquad [because cos^2 alpha = sin^2 beta]

=cosec2α cosec2β=text{cosec}^2 alpha text{ cosec}^2 beta

Q11 :

If sin2θ=cos3θsin 2theta =cos 3theta and θtheta is an acute angle, then θtheta is equal to

A
  

18°18degree

B
  

27°27degree

C
  

36°36degree

D
  

45°45degree

View Answer
Correct Answer: A

18°18degree

Description:

We know that sinθ=cos(90°θ)sintheta = cos (90degree - theta)

sin2θ=cos3θtherefore sin 2theta = cos 3theta

cos(90°2θ)=cos3θRightarrow cos (90degree - 2theta) = cos 3theta

2θ=90°3θRightarrow 2theta = 90degree - 3theta

θ=18°Rightarrow theta = 18degree

Q12 :

If sec 11θ= cosec 7θ(0°<θ<20°)11theta = text{ cosec } 7theta (0degree lt theta lt 20degree), then the value of θtheta is

A
  

5°5degree

B
  

10°10degree

C
  

15°15degree

D
  

18°18degree

View Answer
Correct Answer: A

5°5degree

Description:

Given 1cos11θ=1sin7θ=1cos(907θ)dfrac{1}{cos 11theta} = dfrac{1}{sin 7theta} = dfrac{1}{cos (90- 7theta) }

11θ=907θRightarrow 11theta = 90 - 7theta

θ=5°Rightarrow theta = 5degree

Q13 :

The maximum value of sinθcosθsin theta cdot cos theta is

A
  

1

B
  

12frac{1}{2}

C
  

12frac{1}{sqrt{2}}

D
  

32frac{sqrt{3}}{2}

View Answer
Correct Answer: B

12frac{1}{2}

Description:

By definition, for Maxima or Minima,

ddθ(sinθcosθ)=0frac{d}{dtheta} (sin theta cos theta ) = 0

cos2θsin2θ=0Rightarrow cos^2 theta - sin^2 theta = 0

cosθ=sinθθ=45Rightarrow cos theta = sin theta Rightarrow theta = 45

max (sinθcosθ)therefore text{max } (sin theta cos theta )

=sin45cos45=12=sin 45^circ cos 45^circ = frac{1}{2}

Q14 :

The value of sin3(15°)cos3(15°)sin^3 (15degree) - cos^3 (15degree) is

A
  

34(sin15°cos15°)frac{3}{4}(sin 15degree - cos 15degree )

B
  

582frac{5}{8sqrt{2}}

C
  

582-frac{5}{8sqrt{2}}

D
  

542-frac{5}{4sqrt{2}}

View Answer
Correct Answer: D

542-frac{5}{4sqrt{2}}

Description:

sin315cos315=(sin15cos15)(1+sin15cos15)sin^3 15 - cos^3 15 = (sin 15 - cos 15)(1 + sin 15 cos 15)

=(sin15cos15)(1+12sin30)= (sin 15 - cos 15) Big(1 + frac{1}{2}sin 30Big)

=54(sin15cos15)=frac{5}{4}(sin 15 - cos 15)

=54[±1sin30]=frac{5}{4}Big[pmsqrt{1 - sin 30}Big]

=±542=542(Neglecting +ve sign)=pmfrac{5}{4sqrt{2}} = - frac{5}{4sqrt{2}} ; text{(Neglecting +ve sign)}

Q15 :

The value of 3tan20°tan320°13tan220frac{3 tan 20degree - tan^3 20 degree}{1 - 3tan^2 20} is equal to

A
  

13frac{1}{sqrt{3}}

B
  

1

C
  

3sqrt{3}

D
  

23frac{2}{sqrt{3}}

View Answer
Correct Answer: C

3sqrt{3}

Description:

We know that tan3θ=3tanθtan3θ13tan2θtan 3theta =frac{3 tan theta - tan^3 theta}{1 - 3 tan^2theta}

Here, θ=20°theta = 20degree

3tan20°tan320°13tan220°therefore frac{3 tan 20degree - tan^3 20degree }{1 - 3 tan^2 20degree}

=tan3θ=tan60°=3=tan 3theta = tan 60degree = sqrt{3}

Q16 :

If 2cos2θ+11sinθ7=02 cos^2 theta + 11 sin theta - 7 = 0, then  the value of sinθsin theta is equal to

A
  

12frac{-1}{2}

B
  

12frac{1}{2}

C
  

5

D
  

12frac{1}{sqrt{2}}

View Answer
Correct Answer: B

12frac{1}{2}

Description:

The given equation can be written as

22sin2θ+11sinθ 7=02 - 2 sin^2 theta + 11 sin theta - 7 = 0

2sin2θ11sinθ+5=0Rightarrow 2 sin^2 theta - 11 sin theta + 5 = 0

sinθ=11±121404Rightarrow sin theta = frac{11 pm sqrt{121-40}}{4}

=11±94=5 or 12=frac{11 pm 9}{4} = 5 text{ or } frac{1}{2}

Since sinθsin theta can not be greater than 1,

sinθ=12therefore sin theta = frac{1}{2}

Q17 :

The angle between the hour and minute hands of a clock at 02 : 15 hour is

A
  

15°15degree

B
  

712°7frac{1}{2}degree

C
  

2212°22frac{1}{2}degree

D
  

30°30degree

View Answer
Correct Answer: C

2212°22frac{1}{2}degree

Description:

The angle between two consecutive hour marks  =36012=30°=frac{360}{12} = 30degree
By question, minute hand is at 3 and hour hand slightly ahead of 2.

therefore In 15 minutes hour hand moves by an angle of 3060×15=712°frac{30}{60} times 15 = 7frac{1}{2}degree

therefore Required angle =30°712°=2212°= 30degree - 7frac{1}{2}degree =22frac{1}{2}degree

Q18 :

An aeroplane at a height of 3000 m, passes vertically above another aeroplane at an instant. If the angles of elevation of the two aeroplanes from some point on the ground are 60°60degree and 45°45degree, respectively, then the vertical distance between the two planes is:

A
  

1000(31) m 1000 Big(sqrt{3 - 1}Big) text{ m }

B
  

10003 m 1000 sqrt{3} text{ m }

C
  

1000(33) m 1000 Big(3 - sqrt{3}Big) text{ m }

D
  

10003 m 1000 sqrt{3} text{ m }

View Answer
Correct Answer: C

1000(33) m 1000 Big(3 - sqrt{3}Big) text{ m }

Description:

LetAD=h BD=(3000h) Now, tan45°=BDCB  BD=CB=(3000h)mbegin{aligned} text{Let} quad text{AD} &= h therefore quad text{BD} &= (3000 - h) text{Now, } tan 45degree &= frac{text{BD}}{text{CB}} therefore quad text{ BD} &= text{CB} = (3000 - h) text{m} end{aligned}

Again

tan 60°=ABBCquad text{tan } 60degree = frac{text{AB}}{text{BC}}


V3=30003000hRightarrow quad text{V}_3 = frac{3000}{3000 - h}

h=3000130003=3000330003Rightarrow quad h =frac{3000}{1} - frac{3000}{sqrt{3}} =frac{3000sqrt{3} - 3000}{sqrt{3}}

=1000(33)= 1000 (3 - sqrt3)

Q19 :

If tanθ+secθ=2,0θπ2tan theta + sec theta = 2, 0 le theta le frac{pi}{2}; then the value of tanθtantheta is equal to :

A
  

34frac{3}{4}

B
  

54frac{5}{4}

C
  

32frac{3}{2}

D
  

52frac{5}{2}

View Answer
Correct Answer: A

34frac{3}{4}

Description:

We know that

sec2θtan2θ=1sec^2theta - tan^2 theta = 1
and secθ+tanθ=2sec theta + tan theta = 2(given)    ...(i)

then, sec2θtan2θsecθ+tanθ=12frac{sec^2 theta - tan^2 theta}{sec theta + tan theta} = frac{1}{2}

secθtanθ=12therefore sec theta - tan theta = frac{1}{2} ...(ii)

Subtracting (ii) from (i)

2tanθ=32tanθ=342 tan theta = frac{3}{2} Rightarrow tan theta = frac{3}{4}

Q20 :

The value of (cos225°+cos265°)(cos^2 25degree + cos^2 65degree) is:

A
  

0

B
  

sin240°sin^2 40degree

C
  

cos240°cos^2 40degree

D
  

1

View Answer
Correct Answer: D

1

Description:

cos225°=cos2(90°25°)cos^2 25degree = cos^2 (90degree - 25degree)

=sin265°= sin^2 65degree

cos225°+cos265°=sin265°+cos265°therefore cos^2 25degree + cos^2 65degree = sin^2 65degree + cos^2 65degree

=1(sin2θ+cos2θ=1)= 1 (because sin^2 theta + cos^2 theta = 1)

Q21 :

If cos2θ3cosθ+2sin2θ=1,θ,0frac{cos^2theta - 3costheta + 2}{sin^2theta} = 1, theta, 0 then θtheta is :

A
  

30°30degree

B
  

60°60degree

C
  

75°75degree

D
  

90°90degree

View Answer
Correct Answer: B

60°60degree

Description:

Given, cos2θ3cosθ+2sin2θ=1dfrac{cos^2theta - 3costheta + 2}{sin^2theta} = 1

cos2θ3cosθ+2=sin2θ=1cos2θRightarrow cos^2theta - 3costheta + 2 = sin^2theta = 1 - cos^2 theta

2cos2θ3cosθ+1=0Rightarrow 2 cos^2 theta - 3 cos theta + 1 = 0

2cos2θ2cosθcosθ+1=0Rightarrow 2 cos^2 theta - 2 cos theta - cos theta + 1 = 0

(2cosθ1)(cosθ1)=0Rightarrow (2 cos theta - 1)(cos theta - 1) = 0 either cosθ=1 or (2cosθ1)=0cos theta = 1 quad text{ or } (2 cos theta - 1) = 0 but cosθ1cos theta ne 1

cosθ=1therefore cos theta = 1

cosθ=12=cos60°therefore cos theta = frac{1}{2} = cos 60degree

θ=60°therefore theta = 60^degree

Q22 :

If a and b are positive, then the relation sinθ=(a+2b)/2sin theta = (text{a} + 2text{b})/2text{b } is

A
  

not possible

B
  

possible only if a = b

C
  

possible if a < b

D
  

possible if b > a

View Answer
Correct Answer: A

not possible

Description:

sinθ=a+2b2b=a2b+1>1sin theta = frac{text{a} + 2text{b}}{2text{b}} = frac{text{a}}{2text{b}} + 1 gt 1

[ a  and  b  are the a2b in the][because text{ a } text{ and } text{ b } text{ are the } therefore frac{text{a}}{2text{b}} text{ in the} ]

But sinθsin theta lies between -1 and 1

therefore Not possible

Q23 :

If the angle of elevation of the top of a tower at a distance 100 metres from its foot is 45°45degree, then the height, in metres, of the tower is equal to

A
  

100

B
  

75

C
  

4500

D
  

50

View Answer
Correct Answer: A

100

Description:

h100=tan45°frac{h}{100} = tan 45degree

h=100 m Rightarrow h = 100 text{ m }


Q24 :

The expression cos3θsin3θcosθsinθfrac{cos^3 theta - sin^3 theta}{cos theta - sin theta} simplifies to

A
  

1+sinθ21 + frac{sin theta}{2}

B
  

1+sin2θ21 + frac{sin 2 theta}{2}

C
  

1+sinθ2frac{1 + sin theta}{2}

D
  

1+sin2θ2frac{1 + sin 2 theta}{2}

View Answer
Correct Answer: B

1+sin2θ21 + frac{sin 2 theta}{2}

Description:

cos3θsin3θcosθsinθfrac{cos^3 theta - sin^3 theta}{cos theta - sin theta}

=(cosθsinθ)(cos2θ+sin2θsinθcosθ)cosθsinθ= frac{(cos theta - sin theta) (cos^2 theta + sin^2 theta sin theta cos theta) }{cos theta - sin theta}

=1+2sinθcosθ2(sin2θ+cos2θ=1)= 1 + frac{2 sin theta cos theta}{2} (because sin^2 theta + cos^2 theta = 1)

=1+sin2θ2= 1 + frac{sin 2 theta}{2}

Q25 :

If tan A + cot A = 2, then the value of sec A, is equal to

A
  

11

B
  

2sqrt2

C
  

12frac{1}{2}

D
  

32frac{sqrt3}{2}

View Answer
Correct Answer: B

2sqrt2

Description:

tan A + cot A = 2

sinAcosA+cosAsinA=2sin2A+cos2Atherefore frac{sin A}{cos A} + frac{cos A}{sin A} =2 Rightarrow sin^2 A + cos^2 A

=2sinAcosA1=sin2Asin2A=2 sin A cos A Rightarrow 1 = sin 2A Rightarrow sin 2A

=sin90°2A=90A=cos45°=sin 90degree Rightarrow 2A = 90 Rightarrow A = cos 45degree

=secA=sec45=2= sec A = sec 45 = sqrt2